백엔드 개발 파이썬 튜토리얼 예제가 포함된 Python 다중 처리 모듈에 대한 빠른 가이드

예제가 포함된 Python 다중 처리 모듈에 대한 빠른 가이드

Sep 12, 2024 pm 02:17 PM

A Quick Guide to the Python multiprocessing Module with Examples

소개

Python의 다중 처리 모듈을 사용하면 프로세스를 생성하고 관리할 수 있으므로 컴퓨터의 다중 프로세서를 최대한 활용할 수 있습니다. 스레드가 동일한 메모리 공간을 공유하는 스레딩과 달리 각 프로세스에 대해 별도의 메모리 공간을 사용하여 병렬 실행을 달성하는 데 도움이 됩니다. 다음은 간단한 예와 함께 multiprocessing 모듈에서 일반적으로 사용되는 클래스 및 메소드 목록입니다.

1. 프로세스

Process 클래스는 멀티프로세싱 모듈의 핵심으로, 새로운 프로세스를 생성하고 실행할 수 있게 해줍니다.

from multiprocessing import Process

def print_numbers():
    for i in range(5):
        print(i)

p = Process(target=print_numbers)
p.start()  # Starts a new process
p.join()   # Waits for the process to finish
로그인 후 복사

2. 시작()

프로세스 활동을 시작합니다.

p = Process(target=print_numbers)
p.start()  # Runs the target function in a separate process
로그인 후 복사

3. 가입([시간 초과])

join() 메소드가 호출된 프로세스가 종료될 때까지 호출 프로세스를 차단합니다. 선택적으로 시간 초과를 지정할 수 있습니다.

p = Process(target=print_numbers)
p.start()
p.join(2)  # Waits up to 2 seconds for the process to finish
로그인 후 복사

4. is_alive()

프로세스가 아직 실행 중이면 True를 반환합니다.

p = Process(target=print_numbers)
p.start()
print(p.is_alive())  # True if the process is still running
로그인 후 복사

5. 현재_프로세스()

호출 프로세스를 나타내는 현재 Process 개체를 반환합니다.

from multiprocessing import current_process

def print_current_process():
    print(current_process())

p = Process(target=print_current_process)
p.start()  # Prints the current process info
로그인 후 복사

6. 활성_어린이()

현재 살아있는 모든 Process 객체의 목록을 반환합니다.

p1 = Process(target=print_numbers)
p2 = Process(target=print_numbers)
p1.start()
p2.start()

print(Process.active_children())  # Lists all active child processes
로그인 후 복사

7. CPU_카운트()

머신에서 사용할 수 있는 CPU 수를 반환합니다.

from multiprocessing import cpu_count

print(cpu_count())  # Returns the number of CPUs on the machine
로그인 후 복사

8. 수영장

풀 개체는 여러 입력 값에 걸쳐 함수 실행을 병렬화하는 편리한 방법을 제공합니다. 작업자 프로세스 풀을 관리합니다.

from multiprocessing import Pool

def square(n):
    return n * n

with Pool(4) as pool:  # Pool with 4 worker processes
    result = pool.map(square, [1, 2, 3, 4, 5])

print(result)  # [1, 4, 9, 16, 25]
로그인 후 복사

9. 대기열

큐는 여러 프로세스가 서로 데이터를 전달하여 통신할 수 있도록 하는 공유 데이터 구조입니다.

from multiprocessing import Process, Queue

def put_data(q):
    q.put([1, 2, 3])

def get_data(q):
    data = q.get()
    print(data)

q = Queue()
p1 = Process(target=put_data, args=(q,))
p2 = Process(target=get_data, args=(q,))

p1.start()
p2.start()
p1.join()
p2.join()
로그인 후 복사

10. 잠금

잠금을 사용하면 한 번에 하나의 프로세스만 공유 리소스에 액세스할 수 있습니다.

from multiprocessing import Process, Lock

lock = Lock()

def print_numbers():
    with lock:
        for i in range(5):
            print(i)

p1 = Process(target=print_numbers)
p2 = Process(target=print_numbers)

p1.start()
p2.start()
p1.join()
p2.join()
로그인 후 복사

11. 값과 배열

값 및 배열 개체를 사용하면 프로세스 간에 간단한 데이터 유형과 배열을 공유할 수 있습니다.

from multiprocessing import Process, Value

def increment(val):
    with val.get_lock():
        val.value += 1

shared_val = Value('i', 0)
processes = [Process(target=increment, args=(shared_val,)) for _ in range(10)]

for p in processes:
    p.start()

for p in processes:
    p.join()

print(shared_val.value)  # Output will be 10
로그인 후 복사

12. 파이프

파이프는 두 프로세스 간의 양방향 통신 채널을 제공합니다.

from multiprocessing import Process, Pipe

def send_message(conn):
    conn.send("Hello from child")
    conn.close()

parent_conn, child_conn = Pipe()
p = Process(target=send_message, args=(child_conn,))
p.start()

print(parent_conn.recv())  # Receives data from the child process
p.join()
로그인 후 복사

13. 관리자

관리자를 사용하면 여러 프로세스가 동시에 수정할 수 있는 목록 및 사전과 같은 공유 개체를 만들 수 있습니다.

from multiprocessing import Process, Manager

def modify_list(shared_list):
    shared_list.append("New item")

with Manager() as manager:
    shared_list = manager.list([1, 2, 3])

    p = Process(target=modify_list, args=(shared_list,))
    p.start()
    p.join()

    print(shared_list)  # [1, 2, 3, "New item"]
로그인 후 복사

14. 세마포어

세마포어를 사용하면 리소스에 대한 액세스를 제어하여 한 번에 특정 수의 프로세스만 액세스하도록 허용할 수 있습니다.

from multiprocessing import Process, Semaphore
import time

sem = Semaphore(2)  # Only 2 processes can access the resource

def limited_access():
    with sem:
        print("Accessing resource")
        time.sleep(2)

processes = [Process(target=limited_access) for _ in range(5)]

for p in processes:
    p.start()

for p in processes:
    p.join()
로그인 후 복사

결론

Python의 다중 처리 모듈은 컴퓨터의 다중 프로세서를 최대한 활용하도록 설계되었습니다. Process를 사용한 프로세스 생성 및 관리부터 Lock 및 Semaphore를 사용한 공유 리소스 제어, Queue 및 Pipe를 통한 통신 촉진에 이르기까지 다중 처리 모듈은 Python 애플리케이션에서 작업을 병렬화하는 데 매우 중요합니다.

위 내용은 예제가 포함된 Python 다중 처리 모듈에 대한 빠른 가이드의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

<gum> : Bubble Gum Simulator Infinity- 로얄 키를 얻고 사용하는 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
Nordhold : Fusion System, 설명
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora : 마녀 트리의 속삭임 - Grappling Hook 잠금 해제 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

파이썬 : 게임, Guis 등 파이썬 : 게임, Guis 등 Apr 13, 2025 am 12:14 AM

Python은 게임 및 GUI 개발에서 탁월합니다. 1) 게임 개발은 Pygame을 사용하여 드로잉, 오디오 및 기타 기능을 제공하며 2D 게임을 만드는 데 적합합니다. 2) GUI 개발은 Tkinter 또는 PYQT를 선택할 수 있습니다. Tkinter는 간단하고 사용하기 쉽고 PYQT는 풍부한 기능을 가지고 있으며 전문 개발에 적합합니다.

Python vs. C : 학습 곡선 및 사용 편의성 Python vs. C : 학습 곡선 및 사용 편의성 Apr 19, 2025 am 12:20 AM

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

파이썬과 시간 : 공부 시간을 최대한 활용 파이썬과 시간 : 공부 시간을 최대한 활용 Apr 14, 2025 am 12:02 AM

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

Python vs. C : 성능과 효율성 탐색 Python vs. C : 성능과 효율성 탐색 Apr 18, 2025 am 12:20 AM

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.

Python Standard Library의 일부는 무엇입니까? 목록 또는 배열은 무엇입니까? Python Standard Library의 일부는 무엇입니까? 목록 또는 배열은 무엇입니까? Apr 27, 2025 am 12:03 AM

Pythonlistsarepartoftsandardlardlibrary, whileraysarenot.listsarebuilt-in, 다재다능하고, 수집 할 수있는 반면, arraysarreprovidedByTearRaymoduledlesscommonlyusedDuetolimitedFunctionality.

파이썬 : 자동화, 스크립팅 및 작업 관리 파이썬 : 자동화, 스크립팅 및 작업 관리 Apr 16, 2025 am 12:14 AM

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

Python 학습 : 2 시간의 일일 연구가 충분합니까? Python 학습 : 2 시간의 일일 연구가 충분합니까? Apr 18, 2025 am 12:22 AM

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

Python vs. C : 주요 차이점 이해 Python vs. C : 주요 차이점 이해 Apr 21, 2025 am 12:18 AM

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.

See all articles