복잡한 데이터 통합이 좋은 작업 오케스트레이션을 만든다고 말하면 어떨까요?
데이터 문제가 아무리 복잡하더라도 언제든지 분할하여 정복할 수 있습니다. ???
이 기사에서는 완전 오픈 소스 Python 라이브러리인 Taipy를 사용하여 복잡한 데이터 문제, 데이터 처리, 데이터 관리를 해결하는 방법을 자세히 설명합니다. 데이터 정리, 작업 조정, 다양한 결과 탐색 등 무엇을 하든 Taipy의 직관적인 디자인을 통해 모든 작업을 처리할 수 있습니다.
스타타이피 ⭐️
Taipy의 시나리오 관리 기반
Taipy가 데이터 워크플로를 간소화하는 데 어떻게 도움이 되는지 세 단계를 통해 살펴보겠습니다.
1. 데이터 통합: 필요한 데이터 확보
모든 AI, ML 및 데이터 기반 프로젝트는 당연히 데이터에서 시작됩니다!
그리고 단일하고 깨끗한 데이터 세트만큼 간단하지는 않습니다. 대부분의 경우 데이터베이스, API, 플랫 파일 또는 기타 외부 소스에서 데이터를 가져오며 때로는 동일한 프로젝트에 있는 경우도 있습니다. 다양한 소스로부터 데이터를 수집하고 통합하는 Taipy의 데이터 통합이 바로 여기에 있습니다.
Taipy에서는 이 프로세스가 주요 추상화인 데이터 노드
를 통해 단순화됩니다.
데이터 노드는 데이터를 나타내지만 직접 저장하지는 않습니다. 대신, CSV 파일, 데이터베이스 테이블, API 응답 등 실제 데이터를 읽고 쓰는 데 필요한 모든 메타데이터를 보유합니다.
다음은 CSV용 데이터 노드를 정의하는 간단한 예입니다.
from taipy import Config initial_dataset_cfg = Config.configure_data_node(id="initial_dataset", storage_type="csv", path="data/dataset.csv", scope=Scope.GLOBAL)
이러한 추상화를 통해 Taipy는 데이터 관리를 담당하므로 사용자는 데이터 변환 및 처리에 집중할 수 있습니다.
2. 작업 조정: 그 많은 데이터로 무엇을 하고 있나요?
이제 데이터가 준비되었으니 어떻게 하시나요? 모든 데이터 워크플로에서 다음 단계에는 데이터를 처리하고 변환하는 작업을 정의하는 작업이 포함됩니다. 이것이 바로 작업 오케스트레이션
이라고 부르는 것입니다.Taipy의 태스크는 데이터 노드를 입력으로 받아 변환을 수행한 다음 데이터 노드를 출력하는 함수와 같습니다.
예를 들어 일부 데이터를 필터링하거나 새로운 측정항목을 계산할 수 있습니다. 다음은 열의 합계를 계산하기 위해 작업을 생성하는 예입니다.
clean_data_task_cfg = Config.configure_task(id="clean_data", function=clean_data, input=initial_dataset_cfg, output=cleaned_dataset_cfg, skippable=True)
작업을 정의한 후에는 작업을 파이프라인으로 정렬하여 단계가 올바른 순서로 실행되도록 할 수 있습니다. 이를 통해 데이터 변환, 모델 구축, 보고서 생성 등의 작업 흐름을 쉽게 구축할 수 있습니다.
3. What-If 분석: 다양한 시나리오 탐색
데이터와 워크플로가 설정되면 다양한 시나리오 탐색을 시작할 수 있습니다. 이것이 바로 What-if 분석이 중요한 역할을 하는 부분입니다.
Taipy의 시나리오는 해결하려는 문제의 특정 사례를 나타내며, 이를 통해 다양한 매개변수를 테스트하고 결과에 어떤 영향을 미치는지 확인할 수 있습니다. 입력 데이터나 가정을 조정하면 처음부터 다시 시작하지 않고도 다양한 시나리오를 모델링할 수 있습니다.
Taipy에서 시나리오를 정의하는 방법은 다음과 같습니다.
scenario_cfg = Config.configure_scenario(id="scenario", task_configs=[clean_data_task_cfg, predict_task_cfg,evaluate_task_cfg], frequency=Frequency.MONTHLY) tp.Core().run() my_first_scenario = create_and_run_scenario(dt.datetime(2021, 1, 25)) predictions = my_first_scenario.predictions.read() print("Predictions\n", predictions)
이를 통해 동일한 프레임워크 내에서 민감도 분석을 쉽게 수행하거나 결과를 최적화할 수 있습니다. 판매 모델에 대해 다양한 할인율을 테스트하고 싶으십니까? 새 시나리오를 만들고 매개변수를 조정한 후 다시 실행하면 됩니다.
Taipy와 기타 파이프라인 관리 도구 비교
Taipy가 Apache Airflow, Luigi 또는 Prefect와 같은 다른 인기 파이프라인 조정 도구와 어떻게 비교되는지 궁금하실 것입니다. 이러한 도구는 분산 환경 전체에서 작업 일정을 관리하는 데 유용하지만 Taipy는 특히 시나리오 관리 및 가상 분석과 관련하여 Python 단순성에 중점을 둔다는 점에서 두각을 나타냅니다.
Airflow/Luigi/Prefect: 일반적으로 ETL 프로세스 조정, 예약 및 워크플로 모니터링에 중점을 둡니다.
Taipy: 워크플로 조정 기능을 제공할 뿐만 아니라 고유한 시나리오 추상화로 가정 분석을 단순화하여 다양한 결과를 원활하게 모델링할 수 있습니다.
최소한의 설정으로 Python에서 복잡한 데이터 워크플로를 처리하려는 개발자를 위해 Taipy는 보다 간단한 코드 우선 접근 방식을 제공합니다.
결론: 타이피로 분열하고 정복하라
분할 및 정복 전략은 데이터 문제의 규모나 복잡성에 관계없이 항상 승리합니다! Taipy를 사용하면 데이터 통합부터 작업 조정, 가상 분석까지 모든 것을 한 곳에서 처리할 수 있습니다. 그리고 데이터 시각화로 마무리할 수도 있습니다.
Taipy를 시험해 볼 준비가 되셨나요? 지금 GitHub 저장소를 확인하고 이것이 데이터 워크플로를 어떻게 간소화할 수 있는지 알아보세요!
스타타이피 ⭐️
별표 ⭐를 남기고 피드백이나 작업한 시나리오를 아래 댓글로 공유하는 것을 잊지 마세요!
위 내용은 복잡한 데이터 통합이 좋은 작업 오케스트레이션을 만든다고 말하면 어떨까요?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

Python은 게임 및 GUI 개발에서 탁월합니다. 1) 게임 개발은 Pygame을 사용하여 드로잉, 오디오 및 기타 기능을 제공하며 2D 게임을 만드는 데 적합합니다. 2) GUI 개발은 Tkinter 또는 PYQT를 선택할 수 있습니다. Tkinter는 간단하고 사용하기 쉽고 PYQT는 풍부한 기능을 가지고 있으며 전문 개발에 적합합니다.

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.

Pythonlistsarepartoftsandardlardlibrary, whileraysarenot.listsarebuilt-in, 다재다능하고, 수집 할 수있는 반면, arraysarreprovidedByTearRaymoduledlesscommonlyusedDuetolimitedFunctionality.

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.
