서문: JavaScript를 학습한 후 JavaScript를 사용하여 몇 가지 흥미로운 효과를 얻을 수 있습니다. 이 문서에서는 웹페이지에 전자 스파이더를 구현하기 위해 JavaScript를 사용하는 방법을 설명합니다.
웹 스파이더 작성 방법을 배우기 전에 전자 스파이더가 어떻게 생겼는지 살펴보겠습니다.
마우스로 움직이는 것을 볼 수 있는데, 이 효과를 어떻게 얻나요? 설명을 시작하겠습니다.
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>Dreaming</title> <!-- External JavaScript files --> <script src=".test.js"></script> <style> /* Remove default padding and margins from body */ body { margin: 0px; padding: 0px; position: fixed; /* Set the background color of webpage to black */ background: rgb(0, 0, 0); } </style> </head> <body> <!-- Create a canvas for drawing --> <canvas id="canvas"></canvas> </body> </html>
보시다시피 HTML 코드는 매우 간단하므로 작업을 시작해 보겠습니다.
JavaScript 코드 작성을 시작하기 전에 계획을 세우십시오.
페이지가 로드되면 캔버스 요소와 그리기 컨텍스트가 초기화됩니다.
촉수 개체를 정의합니다. 각 촉수는 여러 부분으로 구성됩니다.
마우스 움직임 이벤트를 듣고 실시간으로 마우스 위치를 업데이트합니다.
애니메이션 루프를 통해 촉수가 그려지며, 마우스의 위치에 따라 동적으로 변화하여 부드러운 애니메이션 효과를 만들어냅니다.
일반적인 프로세스는 위 단계이지만, 이 코드 작성을 완료하기 전에는 위 프로세스를 이해하지 못할 수도 있다고 생각하지만 어쨌든 문제가 되지 않으므로 웹 스파이더 작성을 시작하겠습니다.
서문: 코드의 논리를 더 잘 이해할 수 있도록 각 코드에 주석을 추가했습니다. 댓글의 도움으로 코드를 조금씩 이해하실 수 있기를 바랍니다:
// Define requestAnimFrame function window.requestAnimFrame = function () { // Check if the browser supports requestAnimFrame function return ( window.requestAnimationFrame || window.webkitRequestAnimationFrame || window.mozRequestAnimationFrame || window.oRequestAnimationFrame || window.msRequestAnimationFrame || // If all these options are unavailable, use setTimeout to call the callback function function (callback) { window.setTimeout(callback) } ) } // Initialization function to get canvas element and return related information function init(elemid) { // Get canvas element let canvas = document.getElementById(elemid) // Get 2d drawing context, note that 'd' is lowercase c = canvas.getContext('2d') // Set canvas width to window inner width and height to window inner height w = (canvas.width = window.innerWidth) h = (canvas.height = window.innerHeight) // Set fill style to semi-transparent black c.fillStyle = "rgba(30,30,30,1)" // Fill the entire canvas with the fill style c.fillRect(0, 0, w, h) // Return drawing context and canvas element return { c: c, canvas: canvas } } // Execute function when page is fully loaded window.onload = function () { // Get drawing context and canvas element let c = init("canvas").c, canvas = init("canvas").canvas, // Set canvas width to window inner width and height to window inner height w = (canvas.width = window.innerWidth), h = (canvas.height = window.innerHeight), // Initialize mouse object mouse = { x: false, y: false }, last_mouse = {} // Function to calculate distance between two points function dist(p1x, p1y, p2x, p2y) { return Math.sqrt(Math.pow(p2x - p1x, 2) + Math.pow(p2y - p1y, 2)) } // Define segment class class segment { // Constructor to initialize segment object constructor(parent, l, a, first) { // If it's the first tentacle segment, position is the tentacle top position // Otherwise, position is the nextPos coordinates of the previous segment object this.first = first if (first) { this.pos = { x: parent.x, y: parent.y, } } else { this.pos = { x: parent.nextPos.x, y: parent.nextPos.y, } } // Set segment length and angle this.l = l this.ang = a // Calculate coordinates for the next segment this.nextPos = { x: this.pos.x + this.l * Math.cos(this.ang), y: this.pos.y + this.l * Math.sin(this.ang), } } // Method to update segment position update(t) { // Calculate angle between segment and target point this.ang = Math.atan2(t.y - this.pos.y, t.x - this.pos.x) // Update position coordinates based on target point and angle this.pos.x = t.x + this.l * Math.cos(this.ang - Math.PI) this.pos.y = t.y + this.l * Math.sin(this.ang - Math.PI) // Update nextPos coordinates based on new position coordinates this.nextPos.x = this.pos.x + this.l * Math.cos(this.ang) this.nextPos.y = this.pos.y + this.l * Math.sin(this.ang) } // Method to return segment to initial position fallback(t) { // Set position coordinates to target point coordinates this.pos.x = t.x this.pos.y = t.y this.nextPos.x = this.pos.x + this.l * Math.cos(this.ang) this.nextPos.y = this.pos.y + this.l * Math.sin(this.ang) } show() { c.lineTo(this.nextPos.x, this.nextPos.y) } } // Define tentacle class class tentacle { // Constructor to initialize tentacle object constructor(x, y, l, n, a) { // Set tentacle top position coordinates this.x = x this.y = y // Set tentacle length this.l = l // Set number of tentacle segments this.n = n // Initialize tentacle target point object this.t = {} // Set random movement parameter for tentacle this.rand = Math.random() // Create first segment of the tentacle this.segments = [new segment(this, this.l / this.n, 0, true)] // Create other segments for (let i = 1; i < this.n; i++) { this.segments.push( new segment(this.segments[i - 1], this.l / this.n, 0, false) ) } } // Method to move tentacle to target point move(last_target, target) { // Calculate angle between tentacle top and target point this.angle = Math.atan2(target.y - this.y, target.x - this.x) // Calculate tentacle distance parameter this.dt = dist(last_target.x, last_target.y, target.x, target.y) // Calculate tentacle target point coordinates this.t = { x: target.x - 0.8 * this.dt * Math.cos(this.angle), y: target.y - 0.8 * this.dt * Math.sin(this.angle) } // If target point is calculated, update position coordinates of last segment object // Otherwise, update position coordinates of last segment object to target point coordinates if (this.t.x) { this.segments[this.n - 1].update(this.t) } else { this.segments[this.n - 1].update(target) } // Iterate through all segment objects, update their position coordinates for (let i = this.n - 2; i >= 0; i--) { this.segments[i].update(this.segments[i + 1].pos) } if ( dist(this.x, this.y, target.x, target.y) <= this.l + dist(last_target.x, last_target.y, target.x, target.y) ) { this.segments[0].fallback({ x: this.x, y: this.y }) for (let i = 1; i < this.n; i++) { this.segments[i].fallback(this.segments[i - 1].nextPos) } } } show(target) { // If distance between tentacle and target point is less than tentacle length, draw tentacle if (dist(this.x, this.y, target.x, target.y) <= this.l) { // Set global composite operation to "lighter" c.globalCompositeOperation = "lighter" // Begin new path c.beginPath() // Start drawing line from tentacle starting position c.moveTo(this.x, this.y) // Iterate through all segment objects and use their show method to draw lines for (let i = 0; i < this.n; i++) { this.segments[i].show() } // Set line style c.strokeStyle = "hsl(" + (this.rand * 60 + 180) + ",100%," + (this.rand * 60 + 25) + "%)" // Set line width c.lineWidth = this.rand * 2 // Set line cap style c.lineCap = "round" // Set line join style c.lineJoin = "round" // Draw line c.stroke() // Set global composite operation to "source-over" c.globalCompositeOperation = "source-over" } } // Method to draw tentacle's circular head show2(target) { // Begin new path c.beginPath() // If distance between tentacle and target point is less than tentacle length, draw white circle // Otherwise draw cyan circle if (dist(this.x, this.y, target.x, target.y) <= this.l) { c.arc(this.x, this.y, 2 * this.rand + 1, 0, 2 * Math.PI) c.fillStyle = "white" } else { c.arc(this.x, this.y, this.rand * 2, 0, 2 * Math.PI) c.fillStyle = "darkcyan" } // Fill circle c.fill() } } // Initialize variables let maxl = 400, // Maximum tentacle length minl = 50, // Minimum tentacle length n = 30, // Number of tentacle segments numt = 600, // Number of tentacles tent = [], // Array of tentacles clicked = false, // Whether mouse is pressed target = { x: 0, y: 0 }, // Tentacle target point last_target = {}, // Previous tentacle target point t = 0, // Current time q = 10; // Step length for each tentacle movement // Create tentacle objects for (let i = 0; i < numt; i++) { tent.push( new tentacle( Math.random() * w, // Tentacle x-coordinate Math.random() * h, // Tentacle y-coordinate Math.random() * (maxl - minl) + minl, // Tentacle length n, // Number of tentacle segments Math.random() * 2 * Math.PI, // Tentacle angle ) ) } // Method to draw image function draw() { // If mouse moves, calculate deviation between tentacle target point and current point if (mouse.x) { target.errx = mouse.x - target.x target.erry = mouse.y - target.y } else { // Otherwise, calculate x-coordinate of tentacle target point target.errx = w / 2 + ((h / 2 - q) * Math.sqrt(2) * Math.cos(t)) / (Math.pow(Math.sin(t), 2) + 1) - target.x; target.erry = h / 2 + ((h / 2 - q) * Math.sqrt(2) * Math.cos(t) * Math.sin(t)) / (Math.pow(Math.sin(t), 2) + 1) - target.y; } // Update tentacle target point coordinates target.x += target.errx / 10 target.y += target.erry / 10 // Update time t += 0.01; // Draw tentacle target point c.beginPath(); c.arc( target.x, target.y, dist(last_target.x, last_target.y, target.x, target.y) + 5, 0, 2 * Math.PI ); c.fillStyle = "hsl(210,100%,80%)" c.fill(); // Draw center points of all tentacles for (i = 0; i < numt; i++) { tent[i].move(last_target, target) tent[i].show2(target) } // Draw all tentacles for (i = 0; i < numt; i++) { tent[i].show(target) } // Update previous tentacle target point coordinates last_target.x = target.x last_target.y = target.y } // Function to loop animation drawing function loop() { // Use requestAnimFrame function to loop window.requestAnimFrame(loop) // Clear canvas c.clearRect(0, 0, w, h) // Draw animation draw() } // Listen for window resize event window.addEventListener("resize", function () { // Reset canvas size w = canvas.width = window.innerWidth h = canvas.height = window.innerHeight // Loop animation drawing function loop() }) // Loop animation drawing function loop() // Use setInterval function to loop setInterval(loop, 1000 / 60) // Listen for mouse move event canvas.addEventListener("mousemove", function (e) { // Record previous mouse position last_mouse.x = mouse.x last_mouse.y = mouse.y // Update current mouse position mouse.x = e.pageX - this.offsetLeft mouse.y = e.pageY - this.offsetTop }, false) // Listen for mouse leave event canvas.addEventListener("mouseleave", function (e) { // Set mouse to false mouse.x = false mouse.y = false }) }
위 코드의 프로세스를 대략적으로 정리하면 다음과 같습니다.
초기화 단계
촉수 개체의 정의
촉수의 주요 방법은 다음과 같습니다.
move: 마우스 위치에 따라 각 세그먼트의 위치를 업데이트합니다.
보여주기: 촉수의 경로를 그립니다.
이벤트 모니터링
애니메이션 루프
drawFunction : 애니메이션 효과를 만드는 데 사용되는 재귀 함수입니다.
촉수 행동
이렇게 전자거미 제작이 완료되었습니다!!!
마지막으로 최종 효과를 살펴보겠습니다.
위 내용은 프론트엔드 새로 고침 프로젝트 - 전자 스파이더의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!