안녕하세요
작은 LLM 프로그램을 테스트하고 싶어서 tensorflow를 사용하기로 결정했습니다.
내 소스 코드는 https://github.com/victordalet/first_llm에서 확인할 수 있습니다
텐서플로우와 numpy를 설치해야 합니다
pip install 'numpy<2' pip install tensorflow
작은 데이터 세트를 계산하려면 데이터 문자열 배열을 만들어야 합니다. 예를 들어 저는 다음과 같이 만듭니다.
data = [ "Salut comment ca va", "Je suis en train de coder", "Le machine learning est une branche de l'intelligence artificielle", "Le deep learning est une branche du machine learning", ]
별 감흥이 없다면 Kaggle에서 데이터세트를 찾아보세요.
이를 위해 다양한 방법으로 소규모 LLM 클래스를 만듭니다.
class LLM: def __init__(self): self.model = None self.max_sequence_length = None self.input_sequences = None self.total_words = None self.tokenizer = None self.tokenize() self.create_input_sequences() self.create_model() self.train() test_sentence = "Pour moi le machine learning est" print(self.test(test_sentence, 10)) def tokenize(self): self.tokenizer = Tokenizer() self.tokenizer.fit_on_texts(data) self.total_words = len(self.tokenizer.word_index) + 1 def create_input_sequences(self): self.input_sequences = [] for line in data: token_list = self.tokenizer.texts_to_sequences([line])[0] for i in range(1, len(token_list)): n_gram_sequence = token_list[:i + 1] self.input_sequences.append(n_gram_sequence) self.max_sequence_length = max([len(x) for x in self.input_sequences]) self.input_sequences = pad_sequences(self.input_sequences, maxlen=self.max_sequence_length, padding='pre') def create_model(self): self.model = Sequential() self.model.add(Embedding(self.total_words, 100, input_length=self.max_sequence_length - 1)) self.model.add(LSTM(150, return_sequences=True)) self.model.add(Dropout(0.2)) self.model.add(LSTM(100)) self.model.add(Dense(self.total_words, activation='softmax')) def train(self): self.model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) X, y = self.input_sequences[:, :-1], self.input_sequences[:, -1] y = tf.keras.utils.to_categorical(y, num_classes=self.total_words) self.model.fit(X, y, epochs=200, verbose=1)
마지막으로 클래스 생성자에서 호출되는 테스트 메서드를 사용하여 모델을 테스트합니다.
경고: 생성된 단어가 이전 단어와 동일하면 이 테스트 함수에서 생성을 차단합니다.
def test(self, sentence: str, nb_word_to_generate: int): last_word = "" for _ in range(nb_word_to_generate): token_list = self.tokenizer.texts_to_sequences([sentence])[0] token_list = pad_sequences([token_list], maxlen=self.max_sequence_length - 1, padding='pre') predicted = np.argmax(self.model.predict(token_list), axis=-1) output_word = "" for word, index in self.tokenizer.word_index.items(): if index == predicted: output_word = word break if last_word == output_word: return sentence sentence += " " + output_word last_word = output_word return sentence
위 내용은 Python에서 tensorflow를 사용하여 테스트하기 위한 LLM 만들기의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!