다음은 IndexIVFFlat 및 IndexIVFPQ 인덱스 간의 비교와 사용에 대한 몇 가지 대안입니다.
Characteristic | IndexIVFFlat | IndexIVFPQ |
---|---|---|
Storage Type | Stores vectors in their original form. | Utilizes product quantization (PQ) to compress vectors. |
Precision | High precision, as it performs exact searches within cells. | May sacrifice some precision for compression, but still provides good results. |
Search Speed | Slower on large datasets due to exhaustive search. | Faster, especially on large sets, thanks to reduced search space. |
Memory Usage | Consumes more memory as it stores all vectors without compression. | Consumes significantly less memory due to compression (up to 97% less). |
Configuration | Simpler, only requires defining the number of cells (nlist). | Requires defining both the number of cells (nlist) and code size (code_size). |
Training | Needs to be trained to create cells before adding data. | Also requires training, but the process is more complex due to quantization. |
IndexFlatL2
IndexPQ
IndexIVFScalarQuantizer
索引IVFPQR
综合索引
这些替代方案允许根据要解决的具体情况使解决方案适应精度、速度和内存使用方面的不同需求。
引用:
[1] https://github.com/facebookresearch/faiss/wiki/Faiss-indexes/9df19586b3a75e4cb1c2fb915f2c695755a599b8
[2] https://ai.plainenglish.io/speeding-up-similarity-search-in-recommender-systems-with-faiss-advanced-concepts-part-ii-95e796a7db74?gi=ce57aff1a0c4
[3] https://www.pinecone.io/learn/series/faiss/faiss-tutorial/
[4] https://faiss.ai/cpp_api/struct/structfaiss_1_1IndexIVFFlat.html
[5] https://unfoldai.com/effortless-large-scale-image-retrieval-with-faiss-a-hands-on-tutorial/
[6] https://www.pinecone.io/learn/series/faiss/product-quantization/
[7] https://www.pinecone.io/learn/series/faiss/composite-indexes/
[8] https://github.com/facebookresearch/faiss/issues/1113
En Español,Soy Español,pero por respeto a la comunidad,pongo primero la traduccion al inglés。
Aquí tienes una comparación entre los índices IndexIVFFlat e IndexIVFPQ, junto con algunas alternativas para su uso:
Característica | IndexIVFFlat | IndexIVFPQ |
---|---|---|
Tipo de Almacenamiento | Almacena vectores en su forma original. | Utiliza cuantización de producto (PQ) para comprimir vectores. |
Precisión | Alta precisión, ya que realiza búsquedas exactas dentro de las celdas. | Puede sacrificar algo de precisión por la compresión, pero aún proporciona buenos resultados. |
Velocidad de Búsqueda | Más lento en grandes conjuntos de datos debido a la búsqueda exhaustiva. | Más rápido, especialmente en grandes conjuntos, gracias a la reducción del espacio de búsqueda. |
Uso de Memoria | Consume más memoria porque almacena todos los vectores sin compresión. | Consume significativamente menos memoria debido a la compresión (hasta 97% menos). |
Configuración | Más simple, solo requiere definir el número de celdas (nlist). | Requiere definir tanto el número de celdas (nlist) como el tamaño del código (code_size). |
Entrenamiento | Necesita ser entrenado para crear las celdas antes de añadir datos. | También necesita entrenamiento, pero el proceso es más complejo debido a la cuantización. |
IndexFlatL2
IndexPQ
IndexIVFScalarQuantizer
IndexIVFPQR
Composite Indexes
These alternatives allow you to adapt the solution to different needs in terms of precision, speed and memory usage depending on the specific case you are addressing.
Citations:
[1] https://www.pinecone.io/learn/series/faiss/faiss-tutorial/
[2] https://www.pinecone.io/learn/series/faiss/product-quantization/
[3] https://www.pinecone.io/learn/series/faiss/composite-indexes/
[4] https://github.com/facebookresearch/faiss/wiki/Faiss-indexes/9df19586b3a75e4cb1c2fb915f2c695755a599b8
[5] https://faiss.ai/cpp_api/struct/structfaiss_1_1IndexIVFFlat.html
[6] https://pub.towardsai.net/unlocking-the-power-of-efficient-vector-search-in-rag-applications-c2e3a0c551d5?gi=71a82e3ea10e
[7] https://www.pingcap.com/article/mastering-faiss-vector-database-a-beginners-handbook/
[8] https://wangzwhu.github.io/home/file/acmmm-t-part3-ann.pdf
[9] https://github.com/alonsoir/ubiquitous-carnival/blob/main/contextual-data-faiss-IndexIVFPQ.py
[10] https://github.com/alonsoir/ubiquitous-carnival/blob/main/contextual-data-faiss-indexivfflat.py
위 내용은 IndexIVFFlat y IndexIVFPQ의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!