Python 및 OpenCV를 사용하여 가장자리 감지 구현: 단계별 가이드
소개
가장자리 감지는 컴퓨터 비전의 기본이므로 이미지 내 객체 경계를 식별할 수 있습니다. 이 튜토리얼에서는 Python 및 OpenCV와 함께 Sobel 연산자와 Canny 가장자리 감지기를 사용하여 가장자리 감지를 구현합니다. 그런 다음 사용자가 이미지를 업로드하고 결과를 볼 수 있도록 Bootstrap 스타일의 Flask를 사용하는 간단한 웹 애플리케이션을 만듭니다.
데모 링크: 가장자리 감지 데모
전제 조건
- 컴퓨터에 Python 3.x가 설치되어 있습니다.
- Python 프로그래밍에 대한 기본 지식
- HTML과 CSS에 익숙하면 도움이 되지만 필수는 아닙니다.
환경 설정
1. 필수 라이브러리 설치
터미널이나 명령 프롬프트를 열고 다음을 실행하세요.
pip install opencv-python numpy Flask
2. 프로젝트 디렉토리 생성
mkdir edge_detection_app cd edge_detection_app
가장자리 감지 구현
1. 소벨 연산자
Sobel 연산자는 가장자리를 강조하면서 이미지 강도의 기울기를 계산합니다.
코드 구현:
import cv2 # Load the image in grayscale image = cv2.imread('input_image.jpg', cv2.IMREAD_GRAYSCALE) if image is None: print("Error loading image") exit() # Apply Sobel operator sobelx = cv2.Sobel(image, cv2.CV_64F, 1, 0, ksize=5) # Horizontal edges sobely = cv2.Sobel(image, cv2.CV_64F, 0, 1, ksize=5) # Vertical edges
2. Canny Edge 감지기
Canny 엣지 검출기는 엣지 검출을 위한 다단계 알고리즘입니다.
코드 구현:
# Apply Canny edge detector edges = cv2.Canny(image, threshold1=100, threshold2=200)
Flask 웹 애플리케이션 만들기
1. Flask 앱 설정
app.py라는 파일을 만듭니다.
from flask import Flask, request, render_template, redirect, url_for import cv2 import os app = Flask(__name__) UPLOAD_FOLDER = 'static/uploads/' OUTPUT_FOLDER = 'static/outputs/' app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER app.config['OUTPUT_FOLDER'] = OUTPUT_FOLDER # Create directories if they don't exist os.makedirs(UPLOAD_FOLDER, exist_ok=True) os.makedirs(OUTPUT_FOLDER, exist_ok=True)
2. 경로 정의
업로드 경로:
@app.route('/', methods=['GET', 'POST']) def upload_image(): if request.method == 'POST': file = request.files.get('file') if not file or file.filename == '': return 'No file selected', 400 filepath = os.path.join(app.config['UPLOAD_FOLDER'], file.filename) file.save(filepath) process_image(file.filename) return redirect(url_for('display_result', filename=file.filename)) return render_template('upload.html')
이미지 처리 기능:
def process_image(filename): image_path = os.path.join(app.config['UPLOAD_FOLDER'], filename) image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE) # Apply edge detection sobelx = cv2.Sobel(image, cv2.CV_64F, 1, 0, ksize=5) edges = cv2.Canny(image, 100, 200) # Save outputs cv2.imwrite(os.path.join(app.config['OUTPUT_FOLDER'], 'sobelx_' + filename), sobelx) cv2.imwrite(os.path.join(app.config['OUTPUT_FOLDER'], 'edges_' + filename), edges)
결과 경로:
@app.route('/result/<filename>') def display_result(filename): return render_template('result.html', original_image='uploads/' + filename, sobelx_image='outputs/sobelx_' + filename, edges_image='outputs/edges_' + filename)
3. 앱 실행
if __name__ == '__main__': app.run(debug=True)
부트스트랩을 사용하여 웹 애플리케이션 스타일 지정
스타일 지정을 위해 HTML 템플릿에 Bootstrap CDN을 포함하세요.
1. 업로드.html
템플릿 디렉토리를 만들고 upload.html을 추가하세요.
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>Edge Detection App</title> <!-- Bootstrap CSS CDN --> <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.5.2/css/bootstrap.min.css"> </head> <body> <div class="container mt-5"> <h1 class="text-center mb-4">Upload an Image for Edge Detection</h1> <div class="row justify-content-center"> <div class="col-md-6"> <form method="post" enctype="multipart/form-data" class="border p-4"> <div class="form-group"> <label for="file">Choose an image:</label> <input type="file" name="file" accept="image/*" required class="form-control-file" id="file"> </div> <button type="submit" class="btn btn-primary btn-block">Upload and Process</button> </form> </div> </div> </div> </body> </html>
2. 결과.html
템플릿 디렉터리에 result.html을 만듭니다.
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>Edge Detection Results</title> <!-- Bootstrap CSS CDN --> <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.5.2/css/bootstrap.min.css"> </head> <body> <div class="container mt-5"> <h1 class="text-center mb-5">Edge Detection Results</h1> <div class="row"> <div class="col-md-6 mb-4"> <h4 class="text-center">Original Image</h4> <img src="{{ url_for('static', filename=original_image) }}" alt="Original Image" class="img-fluid rounded mx-auto d-block"> </div> <div class="col-md-6 mb-4"> <h4 class="text-center">Sobel X</h4> <img src="{{ url_for('static', filename=sobelx_image) }}" alt="Sobel X" class="img-fluid rounded mx-auto d-block"> </div> <div class="col-md-6 mb-4"> <h4 class="text-center">Canny Edges</h4> <img src="{{ url_for('static', filename=edges_image) }}" alt="Canny Edges" class="img-fluid rounded mx-auto d-block"> </div> </div> <div class="text-center mt-4"> <a href="{{ url_for('upload_image') }}" class="btn btn-secondary">Process Another Image</a> </div> </div> </body> </html>
애플리케이션 실행 및 테스트
1. 플라스크 앱 실행
python app.py
2. 애플리케이션 접속
웹 브라우저를 열고 http://localhost:5000으로 이동하세요.
- 이미지를 업로드하고 업로드 및 처리를 클릭하세요.
- 가장자리 감지 결과를 확인하세요.
샘플 결과
결론
Sobel 연산자와 Canny 가장자리 감지기를 사용하여 가장자리 감지를 수행하는 간단한 웹 애플리케이션을 구축했습니다. Python, OpenCV, Flask 및 Bootstrap을 통합하여 사용자가 이미지를 업로드하고 가장자리 감지 결과를 볼 수 있는 대화형 도구를 만들었습니다.
다음 단계
- 애플리케이션 강화: 더 많은 가장자리 감지 옵션을 추가하거나 매개변수 조정을 허용합니다.
- UI 개선: 더 나은 사용자 경험을 위해 더 많은 Bootstrap 구성요소를 통합합니다.
- 추가 탐색: Heroku 또는 AWS와 같은 다른 플랫폼에 앱을 배포하세요.
GitHub 저장소: 가장자리 감지 앱
위 내용은 Python 및 OpenCV를 사용하여 가장자리 감지 구현: 단계별 가이드의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











Python은 데이터 과학, 웹 개발 및 자동화 작업에 적합한 반면 C는 시스템 프로그래밍, 게임 개발 및 임베디드 시스템에 적합합니다. Python은 단순성과 강력한 생태계로 유명하며 C는 고성능 및 기본 제어 기능으로 유명합니다.

2 시간 이내에 파이썬의 기본 사항을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우십시오. 이를 통해 간단한 파이썬 프로그램 작성을 시작하는 데 도움이됩니다.

Python은 게임 및 GUI 개발에서 탁월합니다. 1) 게임 개발은 Pygame을 사용하여 드로잉, 오디오 및 기타 기능을 제공하며 2D 게임을 만드는 데 적합합니다. 2) GUI 개발은 Tkinter 또는 PYQT를 선택할 수 있습니다. Tkinter는 간단하고 사용하기 쉽고 PYQT는 풍부한 기능을 가지고 있으며 전문 개발에 적합합니다.

2 시간 이내에 Python의 기본 프로그래밍 개념과 기술을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우기, 2. 마스터 제어 흐름 (조건부 명세서 및 루프), 3. 기능의 정의 및 사용을 이해하십시오. 4. 간단한 예제 및 코드 스 니펫을 통해 Python 프로그래밍을 신속하게 시작하십시오.

Python은 웹 개발, 데이터 과학, 기계 학습, 자동화 및 스크립팅 분야에서 널리 사용됩니다. 1) 웹 개발에서 Django 및 Flask 프레임 워크는 개발 프로세스를 단순화합니다. 2) 데이터 과학 및 기계 학습 분야에서 Numpy, Pandas, Scikit-Learn 및 Tensorflow 라이브러리는 강력한 지원을 제공합니다. 3) 자동화 및 스크립팅 측면에서 Python은 자동화 된 테스트 및 시스템 관리와 같은 작업에 적합합니다.

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.
