> 백엔드 개발 > 파이썬 튜토리얼 > 노이즈가 있는 데이터 곡선을 효과적으로 완화하는 방법은 무엇입니까?

노이즈가 있는 데이터 곡선을 효과적으로 완화하는 방법은 무엇입니까?

Susan Sarandon
풀어 주다: 2024-10-20 15:58:29
원래의
765명이 탐색했습니다.

How to Effectively Smoothen Noisy Data Curves?

노이즈 곡선을 최적으로 평활화

다음으로 근사화된 데이터세트를 고려하세요.

import numpy as np
x = np.linspace(0, 2*np.pi, 100)
y = np.sin(x) + np.random.random(100) * 0.2
로그인 후 복사

여기에는 20%의 변형이 포함됩니다. UnivariateSpline 및 이동 평균과 같은 접근 방식에는 한계가 있습니다.

Savitzky-Golay 필터

효과적인 솔루션은 scipy에서 사용할 수 있는 Savitzky-Golay 필터입니다. 다항식을 사용하여 작은 창 중앙의 값을 추정하기 위해 최소 제곱 회귀를 사용합니다. 그런 다음 창이 이동하여 프로세스를 반복하여 각 지점이 최적화되도록 조정됩니다.

import numpy as np
import matplotlib.pyplot as plt
from scipy.signal import savgol_filter

x = np.linspace(0, 2*np.pi, 100)
y = np.sin(x) + np.random.random(100) * 0.2
yhat = savgol_filter(y, 51, 3) # window size 51, polynomial order 3

plt.plot(x,y)
plt.plot(x,yhat, color='red')
plt.show()
로그인 후 복사

위 내용은 노이즈가 있는 데이터 곡선을 효과적으로 완화하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

원천:php
본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
저자별 최신 기사
인기 튜토리얼
더>
최신 다운로드
더>
웹 효과
웹사이트 소스 코드
웹사이트 자료
프론트엔드 템플릿