(n-1)차원 배열을 사용하여 다차원 배열 액세스: 종합 가이드
다차원 배열 영역에서 다음과 같은 감질나는 일이 발생합니다. 과제: 특정 차원을 따라 (n-1)차원 배열을 사용하여 n차원 배열에 액세스합니다. 이 퍼즐은 수많은 데이터 과학자와 프로그래머 모두의 마음을 사로잡았습니다.
문제: 다차원 배열 분석
분산된 숫자 값으로 가득 찬 3차원 배열 a를 상상해 보세요. 세 개의 축에 걸쳐. 이제 우리가 주어진 차원, 즉 첫 번째 차원을 따라 최대값을 추출하려는 확고한 욕구를 갖고 있다고 가정해 보겠습니다. 해당 차원에 따라 최대값의 인덱스를 보유하는 (n-1) 차원 배열인 idx를 사용하여 이를 어떻게 달성할 수 있습니까?
해결책 1: 고급 인덱싱의 힘 활용
고급 인덱싱의 힘을 활용하면 딜레마에 대한 해결책을 떠올릴 수 있습니다. numpy의 그리드 기능을 활용하면 인덱스하려는 차원을 제외하고 a의 각 차원 모양에 걸쳐 있는 좌표를 능숙하게 생성할 수 있습니다. 이 연산은 마치 a.max(axis=0)을 통해 추출된 것처럼 a의 최댓값에 접근할 수 있는 능력을 부여합니다.
<code class="python">m, n = a.shape[1:] I, J = np.ogrid[:m, :n] a_max_values = a[idx, I, J]</code>
해결책 2: 대중을 위한 일반적인 접근 방식
보다 일반화된 솔루션을 원하는 사람들을 위해 argmax_to_max를 소개합니다. 이 독창적인 기능을 사용하면 argmax 및 arr에서 arr.max(axis)의 동작을 쉽게 복제할 수 있습니다. 우아한 디자인은 복잡한 조작으로 인덱스 처리 작업을 단순화합니다.
<code class="python">def argmax_to_max(arr, argmax, axis): new_shape = list(arr.shape) del new_shape[axis] grid = np.ogrid[tuple(map(slice, new_shape))] grid.insert(axis, argmax) return arr[tuple(grid)]</code>
다차원 배열 인덱싱: 미묘함
최대값 추출을 넘어 다차원 배열에 액세스 (n-1)차원 배열을 사용하면 또 다른 흥미로운 문제가 발생합니다. 배열 모양을 (n-1)차원 그리드로 분해함으로써 all_idx는 인덱스로 지정된 요소 값의 원활한 검색을 용이하게 합니다.
<code class="python">def all_idx(idx, axis): grid = np.ogrid[tuple(map(slice, idx.shape))] grid.insert(axis, idx) return tuple(grid)</code>
이러한 인덱스 맹글링 기술로 무장하면 이제 지적 능력을 갖게 됩니다. 데이터 랭글링 모험에서 (n-1)차원 배열로 다차원 배열에 액세스하는 문제를 극복하려면 자본을 투자하세요. 이것이 당신에게 승리와 깨달음을 가져다주기를 바랍니다!
위 내용은 (n-1)차원 배열을 사용하여 다차원 배열에 액세스하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!