백엔드 개발 파이썬 튜토리얼 Async Deepgram API 탐색: Python을 사용한 음성-텍스트 변환

Async Deepgram API 탐색: Python을 사용한 음성-텍스트 변환

Oct 21, 2024 pm 06:16 PM

오늘은 음성을 텍스트로 변환하는 Deepgram API를 살펴보겠습니다. 음성 어시스턴트 구축, 회의 기록, 음성 제어 앱 제작 등 Deepgram을 사용하면 그 어느 때보다 쉽게 ​​시작할 수 있습니다.

Exploring Async Deepgram API: Speech-to-Text using Python

딥그램이란 무엇인가요?

Deepgram은 고급 기계 학습 모델을 사용하여 실시간으로 오디오를 텍스트로 변환하는 강력한 음성 인식 플랫폼입니다. 개발자가 전화 통화 기록, 회의 내용을 텍스트로 변환, 고객 상호 작용 분석 등의 작업을 위해 애플리케이션에 통합할 수 있는 사용하기 쉬운 API를 제공합니다.

Deepgram을 사용하는 이유는 무엇입니까?

  • 정확도: Deepgram은 방대한 데이터세트를 학습한 딥러닝 알고리즘 덕분에 높은 정확도를 자랑합니다.

  • 실시간 전사: 말하는 즉시 결과를 얻을 수 있어 라이브 애플리케이션에 적합합니다.

  • 다중 언어: 여러 언어와 악센트를 지원하므로 글로벌 애플리케이션에 다용도로 사용할 수 있습니다.

Deepgram API 시작하기

설치 - pip install httpx

필수 라이브러리 가져오기

import httpx
import asyncio
import logging
import traceback
로그인 후 복사

비동기 함수 정의

#recording_url: The URL of the audio file to be transcribed.
#callback_url: The URL to which Deepgram will send the #transcription results (optional).
#api_key: Your Deepgram API key.

async def transcribe_audio(recording_url: str, callback_url: str, api_key: str):
    url = "https://api.deepgram.com/v1/listen"

    # Define headers
    headers = {
        "Authorization": f"Token {api_key}"
    }

    # Define query parameters
    query_params = {
        "callback_method": "post",
        "callback": callback_url
    }

    # Define body parameters
    body_params = {
        "url": recording_url
    }

로그인 후 복사

4. 비동기식 요청 보내기

    logger.info(f"Sending request to {url} with headers: {headers}, query: {query_params}, body: {body_params}")

    async with httpx.AsyncClient(timeout=60.0) as client:
        try:
            # Make a POST request with query parameters and body
            response = await client.post(url, headers=headers, params=query_params, json=body_params)
            response.raise_for_status()  # Raise an error for HTTP error responses
            result = response.json()
            logger.info(f"Response received: {result}")

            return result

로그인 후 복사

시간 제한이 60초인 httpx.AsyncClient 인스턴스를 생성합니다. async를 사용하면 블록이 실행된 후 클라이언트가 제대로 닫히게 됩니다.
요청이 성공하면 JSON 응답을 구문 분석하여 기록한 후 결과를 반환합니다.

콜백 URL:

테스트용 샘플 콜백 URL로 사용할 수 있습니다.

결론:

이 구조화된 접근 방식은 Python에서 비동기 프로그래밍을 활용하여 Deepgram API와 효율적으로 상호 작용하는 방법을 강조합니다. 코드를 블록으로 나누고 각 부분을 설명함으로써 독자는 구현과 이를 자신의 필요에 맞게 조정하는 방법을 더 잘 이해할 수 있습니다.

위 내용은 Async Deepgram API 탐색: Python을 사용한 음성-텍스트 변환의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

<gum> : Bubble Gum Simulator Infinity- 로얄 키를 얻고 사용하는 방법
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
Nordhold : Fusion System, 설명
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora : 마녀 트리의 속삭임 - Grappling Hook 잠금 해제 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

Python vs. C : 학습 곡선 및 사용 편의성 Python vs. C : 학습 곡선 및 사용 편의성 Apr 19, 2025 am 12:20 AM

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

파이썬과 시간 : 공부 시간을 최대한 활용 파이썬과 시간 : 공부 시간을 최대한 활용 Apr 14, 2025 am 12:02 AM

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

Python vs. C : 성능과 효율성 탐색 Python vs. C : 성능과 효율성 탐색 Apr 18, 2025 am 12:20 AM

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.

Python 학습 : 2 시간의 일일 연구가 충분합니까? Python 학습 : 2 시간의 일일 연구가 충분합니까? Apr 18, 2025 am 12:22 AM

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

Python vs. C : 주요 차이점 이해 Python vs. C : 주요 차이점 이해 Apr 21, 2025 am 12:18 AM

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.

Python Standard Library의 일부는 무엇입니까? 목록 또는 배열은 무엇입니까? Python Standard Library의 일부는 무엇입니까? 목록 또는 배열은 무엇입니까? Apr 27, 2025 am 12:03 AM

Pythonlistsarepartoftsandardlardlibrary, whileraysarenot.listsarebuilt-in, 다재다능하고, 수집 할 수있는 반면, arraysarreprovidedByTearRaymoduledlesscommonlyusedDuetolimitedFunctionality.

파이썬 : 자동화, 스크립팅 및 작업 관리 파이썬 : 자동화, 스크립팅 및 작업 관리 Apr 16, 2025 am 12:14 AM

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

과학 컴퓨팅을위한 파이썬 : 상세한 모양 과학 컴퓨팅을위한 파이썬 : 상세한 모양 Apr 19, 2025 am 12:15 AM

과학 컴퓨팅에서 Python의 응용 프로그램에는 데이터 분석, 머신 러닝, 수치 시뮬레이션 및 시각화가 포함됩니다. 1.numpy는 효율적인 다차원 배열 및 수학적 함수를 제공합니다. 2. Scipy는 Numpy 기능을 확장하고 최적화 및 선형 대수 도구를 제공합니다. 3. 팬더는 데이터 처리 및 분석에 사용됩니다. 4. matplotlib는 다양한 그래프와 시각적 결과를 생성하는 데 사용됩니다.

See all articles