Numpy 배열에 특정 행이 포함되어 있는지 확인
Numpy 배열로 작업할 때 특정 행이 존재하는지 확인해야 하는 경우가 있습니다. 배열 내에서. 표준 Python 목록과 달리 Numpy 배열은 이러한 검사를 수행할 때 특수한 접근 방식이 필요한 고유한 뉘앙스를 제공합니다.
Numpy 배열 차이점
Python 배열과 달리 Numpy 배열은 다음과 같은 경우에 다른 동작을 나타냅니다. in 연산자를 사용하여 행 존재 여부 테스트:
<code class="python"># Python Array a = [[1, 2], [10, 20], [100, 200]] [1, 2] in a # True [1, 20] in a # False # Numpy Array a = np.array([[1, 2], [10, 20], [100, 200]]) np.array([1, 2]) in a # True np.array([1, 20]) in a # True (Unexpected)</code>
효율적인 방법
Numpy 배열에서 행 존재를 효율적으로 확인하려면 다음 방법을 고려하세요.
<code class="python">[1, 2] in a.tolist() # True [1, 20] in a.tolist() # False</code>
<code class="python">any((a[:]==[1,2]).all(1)) # True any((a[:]==[1,20]).all(1)) # False</code>
<code class="python">any(([1, 2] == x).all() for x in a) # Stops on first occurrence</code>
<code class="python">any(np.equal(a, [1, 2]).all(1)) # True</code>
성능 고려 사항
이러한 방법의 성능은 배열의 크기와 구조에 따라 다릅니다. 다음은 300,000 x 3 배열에 대한 몇 가지 타이밍입니다.
early hit: [9000, 9001, 9002] in 300,000 elements: view: 0.01002 seconds python list: 0.00305 seconds gen over numpy: 0.06470 seconds logic equal: 0.00909 seconds late hit: [899970, 899971, 899972] in 300,000 elements: view: 0.00936 seconds python list: 0.30604 seconds gen over numpy: 6.47660 seconds logic equal: 0.00965 seconds
결론
Numpy 배열에서 효율적인 행 존재 확인을 위해 . tolist(), Numpy 뷰 또는 Numpy 논리 함수 메서드. 생성기 방법은 상당한 성능 오버헤드로 인해 피해야 합니다.
위 내용은 Numpy 배열에 특정 행이 포함되어 있는지 확인하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!