Python에서 병렬성을 구현하는 방법: 멀티 코어 성능 활용?
질문: Python에서 병렬 처리 수용
C에서 OpenMP는 병렬 프로그래밍을 강력하게 지원합니다. 그러나 Python에는 이러한 편리한 도구가 없습니다. Python 프로그램에서, 특히 독립 함수에 병렬화가 필요한 시나리오에서 어떻게 병렬성을 달성할 수 있나요?
다음 코드 구조를 고려하세요.
<code class="python">solve1(A) solve2(B)</code>
solv1과solv2가 독립 함수인 경우. 목표는 이 코드를 병렬로 실행하여 실행 시간을 최소화하는 것입니다.
제공된 코드 조각을 살펴보겠습니다.
<code class="python">def solve(Q, G, n): i = 0 tol = 10 ** -4 while i < 1000: inneropt, partition, x = setinner(Q, G, n) outeropt = setouter(Q, G, n) if (outeropt - inneropt) / (1 + abs(outeropt) + abs(inneropt)) < tol: break node1 = partition[0] node2 = partition[1] G = updateGraph(G, node1, node2) if i == 999: print "Maximum iteration reaches" print inneropt</code>
setinner 및 setouter 함수를 병렬화하는 것이 목표입니다.
답변: 멀티프로세싱 모듈로 병렬 성능 발휘
멀티프로세싱 모듈은 Python의 병렬 프로그래밍을 위한 강력한 솔루션을 제공합니다. 이를 통해 여러 CPU 코어의 처리 능력을 활용하여 작업을 동시에 실행할 수 있는 여러 프로세스를 생성할 수 있습니다.
제공된 코드의 경우 처리 풀을 사용할 수 있습니다. 수행 방법은 다음과 같습니다.
<code class="python">from multiprocessing import Pool pool = Pool() result1 = pool.apply_async(solve1, [A]) # evaluate "solve1(A)" asynchronously result2 = pool.apply_async(solve2, [B]) # evaluate "solve2(B)" asynchronously answer1 = result1.get(timeout=10) answer2 = result2.get(timeout=10)</code>
이 코드 조각은solv1 및solv2 함수를 비동기적으로 실행하는 프로세스 풀을 생성합니다. 각 CPU 코어는 하나의 프로세스를 동시에 실행하여 실행 시간을 효과적으로 줄일 수 있습니다.
작업을 병렬화하는 또 다른 방법은 맵 기능을 사용하는 것입니다.
<code class="python">args = [A, B] results = pool.map(solve1, args)</code>
이 접근 방식은solv1 기능을 다음에 적용합니다. args 목록의 각 요소는 병렬로 실행됩니다.
그러나 Python의 병렬 프로그래밍에는 스레드를 사용해서는 안 된다는 점에 유의하는 것이 중요합니다. 이는 GIL(Global Interpreter Lock)이 여러 스레드가 Python 바이트 코드를 동시에 실행하는 것을 방지하여 본질적으로 병렬 처리의 잠재적 이점을 무효화하기 때문입니다.
위 내용은 Python에서 병렬성을 구현하는 방법: 멀티 코어 성능 활용?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.

Pythonlistsarepartoftsandardlardlibrary, whileraysarenot.listsarebuilt-in, 다재다능하고, 수집 할 수있는 반면, arraysarreprovidedByTearRaymoduledlesscommonlyusedDuetolimitedFunctionality.

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

웹 개발에서 Python의 주요 응용 프로그램에는 Django 및 Flask 프레임 워크 사용, API 개발, 데이터 분석 및 시각화, 머신 러닝 및 AI 및 성능 최적화가 포함됩니다. 1. Django 및 Flask 프레임 워크 : Django는 복잡한 응용 분야의 빠른 개발에 적합하며 플라스크는 소형 또는 고도로 맞춤형 프로젝트에 적합합니다. 2. API 개발 : Flask 또는 DjangorestFramework를 사용하여 RESTFULAPI를 구축하십시오. 3. 데이터 분석 및 시각화 : Python을 사용하여 데이터를 처리하고 웹 인터페이스를 통해 표시합니다. 4. 머신 러닝 및 AI : 파이썬은 지능형 웹 애플리케이션을 구축하는 데 사용됩니다. 5. 성능 최적화 : 비동기 프로그래밍, 캐싱 및 코드를 통해 최적화
