행 수가 균등하게 나눌 수 없는 경우 대형 Pandas 데이터프레임을 여러 부분으로 분할하는 방법은 무엇입니까?
대형 Pandas 데이터프레임을 여러 부분으로 분할
대량 데이터세트로 작업할 때 더 작고 관리 가능한 덩어리로 분할해야 하는 경우가 많습니다. 이를 통해 성능이 향상되고, 메모리 사용량이 향상되며, 병렬 처리가 용이해집니다. 이 기사에서는 np.split()을 사용하여 대규모 Pandas 데이터 프레임을 분할하려고 시도하는 동안 발생한 문제를 해결하겠습니다.
문제 이해
제공된 코드 코드 조각은 np.split()을 사용하여 데이터 프레임을 4개의 하위 그룹으로 분할했습니다. 그러나 불평등한 나누기로 인해 ValueError가 발생했습니다. 이 오류는 데이터프레임의 요소 수가 원하는 분할 수로 균등하게 나누어지지 않을 때 발생합니다.
해결책: np.array_split() 사용
극복하려면 이 과제에서는 np.split()보다 더 다양한 대안인 np.array_split()을 사용합니다. 설명서에 나와 있듯이 array_split()은 동등하지 않은 나누기를 허용하므로 우리와 같은 상황에 적합합니다.
구현
다음은 np를 사용하는 Python 코드 예제입니다. array_split()은 데이터프레임을 네 부분으로 분할합니다:
<code class="python">import pandas as pd import numpy as np # Create a sample dataframe df = pd.DataFrame({'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'], 'B': ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'], 'C': np.random.randn(8), 'D': np.random.randn(8)}) # Split the dataframe into four groups using array_split groups = np.array_split(df, 3) # Print the split groups for group in groups: print(group)</code>
이렇게 하면 데이터프레임이 대략 동일한 크기의 그룹 3개로 효과적으로 분할됩니다. 각 그룹은 독립적으로 액세스하고 처리할 수 있어 불평등한 분할의 초기 문제를 해결할 수 있습니다.
위 내용은 행 수가 균등하게 나눌 수 없는 경우 대형 Pandas 데이터프레임을 여러 부분으로 분할하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











Fiddlerevery Where를 사용할 때 Man-in-the-Middle Reading에 Fiddlereverywhere를 사용할 때 감지되는 방법 ...

Linux 터미널에서 Python 사용 ...

10 시간 이내에 컴퓨터 초보자 프로그래밍 기본 사항을 가르치는 방법은 무엇입니까? 컴퓨터 초보자에게 프로그래밍 지식을 가르치는 데 10 시간 밖에 걸리지 않는다면 무엇을 가르치기로 선택 하시겠습니까?

Pythonasyncio에 대해 ...

Investing.com의 크롤링 전략 이해 많은 사람들이 종종 Investing.com (https://cn.investing.com/news/latest-news)에서 뉴스 데이터를 크롤링하려고합니다.

Python 3.6에 피클 파일 로딩 3.6 환경 오류 : ModulenotFounderRor : nomodulename ...

SCAPY 크롤러를 사용할 때 파이프 라인 파일을 작성할 수없는 이유에 대한 논의 지속적인 데이터 저장을 위해 SCAPY 크롤러를 사용할 때 파이프 라인 파일이 발생할 수 있습니다 ...
