Pandas DataFrames에서 NaN 값을 열 평균으로 바꾸기
Pandas DataFrames로 작업할 때 NaN(누락) 값이 나타나는 것이 일반적입니다. 이러한 값을 효과적으로 처리하려면 적절한 값으로 바꾸는 것이 중요합니다. 한 가지 효율적인 방법은 NaN 값을 해당 열의 평균으로 바꾸는 것입니다.
DataFrame.fillna를 사용한 솔루션
참조 질문에 언급된 접근 방식과 달리 pandas DataFrames는 다르게 처리될 수 있습니다. DataFrame.fillna 메서드는 NaN 값을 채우기 위한 간단한 솔루션을 제공합니다.
<code class="python">df.fillna(df.mean())</code>
자세한 설명:
예:
다음 DataFrame을 고려해 보겠습니다.
A B C 0 -0.166919 0.979728 -0.632955 1 -0.297953 -0.912674 -1.365463 2 -0.120211 -0.540679 -0.680481 3 NaN -2.027325 1.533582 4 NaN NaN 0.461821 5 -0.788073 NaN NaN 6 -0.916080 -0.612343 NaN 7 -0.887858 1.033826 NaN 8 1.948430 1.025011 -2.982224 9 0.019698 -0.795876 -0.046431
fillna 메서드를 평균에 적용한 후:
A B C 0 -0.166919 0.979728 -0.632955 1 -0.297953 -0.912674 -1.365463 2 -0.120211 -0.540679 -0.680481 3 -0.151121 -2.027325 1.533582 4 -0.151121 -0.231291 0.461821 5 -0.788073 -0.231291 -0.530307 6 -0.916080 -0.612343 -0.530307 7 -0.887858 1.033826 -0.530307 8 1.948430 1.025011 -2.982224 9 0.019698 -0.795876 -0.046431
설명된 대로 NaN 값은 다음으로 대체되었습니다. 해당 열 평균.
위 내용은 Pandas DataFrames의 누락된 값을 열 평균으로 바꾸는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!