Python 3.x에서 예외를 처리할 때 NameError 또는 UnboundLocalError가 발생하는 이유는 무엇입니까?
명명된 예외와 관련된 NameError 및 UnboundLocalError 문제 이해
Python 2.x에서 아래 코드 조각은 명명된 예외의 값을 적절하게 인쇄했습니다. 예외 블록 외부의 예외, 예외:
<code class="python">exc = None try: raise Exception except Exception as exc: pass print(exc)</code>
그러나 Python 3.x에서 동일한 코드를 시도하면 NameError(또는 함수 컨텍스트에서는 UnboundLocalError)가 발생합니다. 이 문제를 해결하려면 Python의 업데이트된 동작에 대한 이론적 근거를 파악하는 것이 중요합니다.
Python 3.x 예외 범위 및 정리
Python 3.x의 제외 문 순환 참조 및 조기 가비지 수집을 방지하기 위해 바인딩된 예외의 범위를 명시적으로 제한합니다. as 구문을 사용하여 예외를 할당하면 Except 절 끝에서 지워집니다. 이를 위해서는 추가 액세스를 위해 예외를 제외 블록 외부의 다른 이름에 할당해야 합니다.
exc = ex를 단순히 다시 할당하는 것만으로는 충분하지 않습니다. 왜냐하면 제외 절은 새 범위를 생성하지 않기 때문입니다. 대신, 현재 예외 할당에 지정된 이름을 현재 이름에서 제거합니다.
과거 컨텍스트 및 Python 2.x 동작
Python 2.x에서는 예외가 발생했습니다. 트레이스백에 대한 참조를 보유하지 않으므로 Python 3.x에서와 같이 엄격한 정리가 필요하지 않습니다. 순환 참조가 없기 때문에 문제를 일으키지 않고 예외를 제외 블록 외부의 명명된 변수에 바인딩할 수 있었습니다.
예외 처리에 대한 권장 사항
Python 3에서 예외를 효과적으로 처리하려면 .x에서는 다음 지침을 권장합니다:
- 예외를 제외 절 외부의 새 변수에 바인딩합니다.
- 필요한 경우 순환 참조를 방지하고 용이하게 하기 위해 역추적 참조를 명시적으로 지웁니다. 가비지 수집.
다음 코드는 이러한 권장 사항을 예시합니다.
<code class="python">try: raise Exception("foo") except Exception as e: exc = e # Bind to a new variable exc.__traceback__ = None # Explicitly clear traceback</code>
이러한 방식을 준수하면 Python 3.x에서 예외를 자신 있게 처리하고 액세스하여 함정을 피할 수 있습니다. NameError 및 UnboundLocalError에 의해 제기되었습니다.
위 내용은 Python 3.x에서 예외를 처리할 때 NameError 또는 UnboundLocalError가 발생하는 이유는 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.

Pythonlistsarepartoftsandardlardlibrary, whileraysarenot.listsarebuilt-in, 다재다능하고, 수집 할 수있는 반면, arraysarreprovidedByTearRaymoduledlesscommonlyusedDuetolimitedFunctionality.

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

과학 컴퓨팅에서 Python의 응용 프로그램에는 데이터 분석, 머신 러닝, 수치 시뮬레이션 및 시각화가 포함됩니다. 1.numpy는 효율적인 다차원 배열 및 수학적 함수를 제공합니다. 2. Scipy는 Numpy 기능을 확장하고 최적화 및 선형 대수 도구를 제공합니다. 3. 팬더는 데이터 처리 및 분석에 사용됩니다. 4. matplotlib는 다양한 그래프와 시각적 결과를 생성하는 데 사용됩니다.

웹 개발에서 Python의 주요 응용 프로그램에는 Django 및 Flask 프레임 워크 사용, API 개발, 데이터 분석 및 시각화, 머신 러닝 및 AI 및 성능 최적화가 포함됩니다. 1. Django 및 Flask 프레임 워크 : Django는 복잡한 응용 분야의 빠른 개발에 적합하며 플라스크는 소형 또는 고도로 맞춤형 프로젝트에 적합합니다. 2. API 개발 : Flask 또는 DjangorestFramework를 사용하여 RESTFULAPI를 구축하십시오. 3. 데이터 분석 및 시각화 : Python을 사용하여 데이터를 처리하고 웹 인터페이스를 통해 표시합니다. 4. 머신 러닝 및 AI : 파이썬은 지능형 웹 애플리케이션을 구축하는 데 사용됩니다. 5. 성능 최적화 : 비동기 프로그래밍, 캐싱 및 코드를 통해 최적화
