Python에서 고정 너비 파일 줄을 어떻게 효율적으로 구문 분석할 수 있나요?
고정 너비 파일 라인의 빠른 구문 분석
각 열이 한 라인에서 특정 수의 문자를 차지하는 고정 너비 파일을 구문 분석하는 것은 효율성이 필요한 작업일 수 있습니다. 이를 효율적으로 달성하는 방법에 대한 설명은 다음과 같습니다.
문제
처음 20자가 하나의 열을 나타내고 그 다음에는 21-30자가 두 번째 열을 나타내는 고정 너비 파일을 생각해 보세요. 에. 100자로 구성된 한 줄을 어떻게 효과적으로 해당 열로 구문 분석할 수 있나요?
해결책
1. 구조체 모듈:
Python 표준 라이브러리의 구조체 모듈을 활용하면 C 구현으로 인해 단순성과 속도를 모두 제공합니다. 아래 코드는 사용법을 보여줍니다:
<code class="python">import struct fieldwidths = (2, -10, 24) fmtstring = ' '.join('{}{}'.format(abs(fw), 'x' if fw < 0 else 's') for fw in fieldwidths) # Convert Unicode input to bytes and decode result. unpack = struct.Struct(fmtstring).unpack_from # Alias. parse = lambda line: tuple(s.decode() for s in unpack(line.encode())) # Parse a sample line. line = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789\n' fields = parse(line) print('fields:', fields)</code>
출력:
fmtstring: '2s 10x 24s', record size: 36 chars fields: ('AB', 'MNOPQRSTUVWXYZ0123456789')
2. 최적화된 문자열 슬라이싱:
문자열 슬라이싱이 일반적으로 사용되지만 큰 줄의 경우 번거로울 수 있습니다. 최적화된 접근 방식은 다음과 같습니다.
<code class="python">from itertools import zip_longest from itertools import accumulate def make_parser(fieldwidths): # Calculate slice boundaries. cuts = tuple(cut for cut in accumulate(abs(fw) for fw in fieldwidths)) # Create field slice tuples. flds = tuple(zip_longest(cuts, (0,)+cuts))[:-1] # Ignore final value. # Construct the parsing function. parse = lambda line: tuple(line[i:j] for i, j in flds) parse.size = sum(abs(fw) for fw in fieldwidths) parse.fmtstring = ' '.join('{}{}'.format(abs(fw), 'x' if fw < 0 else 's') for fw in fieldwidths) return parse # Parse a sample line. line = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789\n' fieldwidths = (2, -10, 24) # Negative values indicate ignored padding fields. parse = make_parser(fieldwidths) fields = parse(line) print('fmtstring:', parse.fmtstring, ', record size:', parse.size, 'chars') print('fields:', fields)</code>
출력:
fmtstring: '2s 10x 24s', record size: 36 chars fields: ('AB', 'MNOPQRSTUVWXYZ0123456789')
위 내용은 Python에서 고정 너비 파일 줄을 어떻게 효율적으로 구문 분석할 수 있나요?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

Pythonlistsarepartoftsandardlardlibrary, whileraysarenot.listsarebuilt-in, 다재다능하고, 수집 할 수있는 반면, arraysarreprovidedByTearRaymoduledlesscommonlyusedDuetolimitedFunctionality.

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

웹 개발에서 Python의 주요 응용 프로그램에는 Django 및 Flask 프레임 워크 사용, API 개발, 데이터 분석 및 시각화, 머신 러닝 및 AI 및 성능 최적화가 포함됩니다. 1. Django 및 Flask 프레임 워크 : Django는 복잡한 응용 분야의 빠른 개발에 적합하며 플라스크는 소형 또는 고도로 맞춤형 프로젝트에 적합합니다. 2. API 개발 : Flask 또는 DjangorestFramework를 사용하여 RESTFULAPI를 구축하십시오. 3. 데이터 분석 및 시각화 : Python을 사용하여 데이터를 처리하고 웹 인터페이스를 통해 표시합니다. 4. 머신 러닝 및 AI : 파이썬은 지능형 웹 애플리케이션을 구축하는 데 사용됩니다. 5. 성능 최적화 : 비동기 프로그래밍, 캐싱 및 코드를 통해 최적화
