목차
Pandas를 사용하여 여러 필드를 그룹화하고 차이점 찾기
데이터프레임 정렬 및 그룹화
차이 계산
결과 데이터 프레임
백엔드 개발 파이썬 튜토리얼 Pandas에서 여러 웹사이트 및 국가의 점수 차이를 계산하는 방법은 무엇입니까?

Pandas에서 여러 웹사이트 및 국가의 점수 차이를 계산하는 방법은 무엇입니까?

Oct 31, 2024 pm 06:37 PM

How to Calculate Score Differences for Multiple Websites and Countries in Pandas?

Pandas를 사용하여 여러 필드를 그룹화하고 차이점 찾기

데이터세트 작업 시 시간 경과에 따라 또는 여러 범주에 걸쳐 값 간의 차이나 변경 사항을 계산해야 하는 경우가 많습니다. Pandas에서는 groupby() 및 diff() 함수를 활용하여 이러한 계산을 효율적으로 수행할 수 있습니다.

주어진 시나리오에서는 다양한 웹사이트의 데이터와 다양한 국가의 점수가 포함된 DataFrame이 있습니다. 귀하의 목표는 각 사이트 국가 조합에 대한 1/3/5일 점수 차이를 결정하는 것입니다.

데이터프레임 정렬 및 그룹화

시작하려면 사이트, 국가 및 기준별로 DataFrame을 정렬하세요. 날짜 열. 정렬을 사용하면 유사한 데이터 요소를 그룹화하여 차이를 더 쉽게 계산할 수 있습니다.

<code class="python">df = df.sort_values(by=['site', 'country', 'date'])</code>
로그인 후 복사

다음으로 groupby() 함수를 사용하여 사이트 및 국가별로 데이터를 그룹화합니다.

<code class="python">grouped = df.groupby(['site', 'country'])</code>
로그인 후 복사

차이 계산

이제 데이터를 그룹화한 상태에서 diff() 함수를 사용하여 점수 차이를 계산할 수 있습니다. 이 함수는 그룹에 있는 연속 행 간의 차이를 계산합니다.

<code class="python">df['diff'] = grouped['score'].diff().fillna(0)</code>
로그인 후 복사

diff() 함수는 기본적으로 누락된 값을 0으로 채워 일관되고 완전한 데이터 세트를 보장합니다.

결과 데이터 프레임

결과 DataFrame에는 계산된 점수 차이와 함께 원본 데이터가 포함됩니다.

         date    site country  score  diff
8  2018-01-01      fb      es    100   0.0
9  2018-01-02      fb      gb    100   0.0
5  2018-01-01      fb      us     50   0.0
6  2018-01-02      fb      us     55   5.0
7  2018-01-03      fb      us    100  45.0
1  2018-01-01  google      ch     50   0.0
4  2018-01-02  google      ch     10 -40.0
0  2018-01-01  google      us    100   0.0
2  2018-01-02  google      us     70 -30.0
3  2018-01-03  google      us     60 -10.0
로그인 후 복사

이 DataFrame은 각 사이트/국가 조합에 대해 원하는 1/3/5일 점수 차이를 제공합니다.

위 내용은 Pandas에서 여러 웹사이트 및 국가의 점수 차이를 계산하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

뜨거운 기사 태그

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

HTML을 구문 분석하기 위해 아름다운 수프를 어떻게 사용합니까? HTML을 구문 분석하기 위해 아름다운 수프를 어떻게 사용합니까? Mar 10, 2025 pm 06:54 PM

HTML을 구문 분석하기 위해 아름다운 수프를 어떻게 사용합니까?

파이썬의 이미지 필터링 파이썬의 이미지 필터링 Mar 03, 2025 am 09:44 AM

파이썬의 이미지 필터링

파이썬에서 파일을 다운로드하는 방법 파이썬에서 파일을 다운로드하는 방법 Mar 01, 2025 am 10:03 AM

파이썬에서 파일을 다운로드하는 방법

Python을 사용하여 텍스트 파일의 ZIPF 배포를 찾는 방법 Python을 사용하여 텍스트 파일의 ZIPF 배포를 찾는 방법 Mar 05, 2025 am 09:58 AM

Python을 사용하여 텍스트 파일의 ZIPF 배포를 찾는 방법

Python을 사용하여 PDF 문서를 사용하는 방법 Python을 사용하여 PDF 문서를 사용하는 방법 Mar 02, 2025 am 09:54 AM

Python을 사용하여 PDF 문서를 사용하는 방법

Django 응용 프로그램에서 Redis를 사용하여 캐시하는 방법 Django 응용 프로그램에서 Redis를 사용하여 캐시하는 방법 Mar 02, 2025 am 10:10 AM

Django 응용 프로그램에서 Redis를 사용하여 캐시하는 방법

Tensorflow 또는 Pytorch로 딥 러닝을 수행하는 방법은 무엇입니까? Tensorflow 또는 Pytorch로 딥 러닝을 수행하는 방법은 무엇입니까? Mar 10, 2025 pm 06:52 PM

Tensorflow 또는 Pytorch로 딥 러닝을 수행하는 방법은 무엇입니까?

NLTK (Natural Language Toolkit) 소개 NLTK (Natural Language Toolkit) 소개 Mar 01, 2025 am 10:05 AM

NLTK (Natural Language Toolkit) 소개

See all articles