Python에서 수백만 개의 데이터 포인트에 대한 Haversine 거리를 효율적으로 계산하려면 어떻게 해야 합니까?
Numpy 벡터화를 사용하여 Python/Pandas에서 빠른 Haversine 근사
위도 및 경도 좌표와 관련된 수백만 개의 데이터 포인트를 처리할 때 다음을 사용하여 거리를 계산합니다. Haversine 공식은 시간이 많이 걸릴 수 있습니다. 이 기사에서는 Haversine 함수의 벡터화된 Numpy 구현을 제공하여 성능을 크게 향상시킵니다.
원래 Haversine 함수:
원래 Haversine 함수는 Python으로 작성되었습니다.
<code class="python">from math import radians, cos, sin, asin, sqrt def haversine(lon1, lat1, lon2, lat2): # convert decimal degrees to radians lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2]) # haversine formula dlon = lon2 - lon1 dlat = lat2 - lat1 a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2 c = 2 * asin(sqrt(a)) km = 6367 * c return km</code>
벡터화된 Numpy Haversine 함수:
벡터화된 Numpy 구현은 Numpy의 최적화된 배열 작업을 활용합니다.
<code class="python">import numpy as np def haversine_np(lon1, lat1, lon2, lat2): lon1, lat1, lon2, lat2 = map(np.radians, [lon1, lat1, lon2, lat2]) dlon = lon2 - lon1 dlat = lat2 - lat1 a = np.sin(dlat/2.0)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2.0)**2 c = 2 * np.arcsin(np.sqrt(a)) km = 6378.137 * c return km</code>
성능 비교:
벡터화된 Numpy 기능은 수백만 개의 입력 포인트를 즉시 처리할 수 있습니다. 예를 들어 무작위로 생성된 값을 생각해 보세요.
<code class="python">lon1, lon2, lat1, lat2 = np.random.randn(4, 1000000) df = pandas.DataFrame(data={'lon1':lon1,'lon2':lon2,'lat1':lat1,'lat2':lat2}) km = haversine_np(df['lon1'],df['lat1'],df['lon2'],df['lat2'])</code>
원래 Python 함수를 사용하면 상당한 시간이 걸리는 이 계산이 즉시 완료됩니다.
결론:
Numpy를 사용하여 Haversine 함수를 벡터화하면 대규모 데이터 세트의 성능을 크게 향상시킬 수 있습니다. Numpy의 최적화된 배열 작업을 통해 여러 데이터 포인트를 효율적으로 처리하여 계산 오버헤드를 줄이고 거리 계산 속도를 높일 수 있습니다. 이러한 최적화를 통해 대규모 데이터 세트에 대한 실시간 지리공간 분석을 수행할 수 있습니다.
위 내용은 Python에서 수백만 개의 데이터 포인트에 대한 Haversine 거리를 효율적으로 계산하려면 어떻게 해야 합니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











Linux 터미널에서 Python 버전을 보려고 할 때 Linux 터미널에서 Python 버전을 볼 때 권한 문제에 대한 솔루션 ... Python을 입력하십시오 ...

Fiddlerevery Where를 사용할 때 Man-in-the-Middle Reading에 Fiddlereverywhere를 사용할 때 감지되는 방법 ...

Python의 Pandas 라이브러리를 사용할 때는 구조가 다른 두 데이터 프레임 사이에서 전체 열을 복사하는 방법이 일반적인 문제입니다. 두 개의 dats가 있다고 가정 해

10 시간 이내에 컴퓨터 초보자 프로그래밍 기본 사항을 가르치는 방법은 무엇입니까? 컴퓨터 초보자에게 프로그래밍 지식을 가르치는 데 10 시간 밖에 걸리지 않는다면 무엇을 가르치기로 선택 하시겠습니까?

Uvicorn은 HTTP 요청을 어떻게 지속적으로 듣습니까? Uvicorn은 ASGI를 기반으로 한 가벼운 웹 서버입니다. 핵심 기능 중 하나는 HTTP 요청을 듣고 진행하는 것입니다 ...

Linux 터미널에서 Python 사용 ...

Investing.com의 크롤링 전략 이해 많은 사람들이 종종 Investing.com (https://cn.investing.com/news/latest-news)에서 뉴스 데이터를 크롤링하려고합니다.
