백엔드 개발 파이썬 튜토리얼 PyTorch에서 평탄화 해제

PyTorch에서 평탄화 해제

Nov 06, 2024 pm 02:38 PM

Unflatten in PyTorch

커피 한잔 사주세요😄

*메모:

  • 내 게시물에서는 unflaten()에 대해 설명하고 있습니다.
  • 내 게시물에서는 flatten() 및 ravel()에 대해 설명합니다.
  • 내 게시물에서는 Flatten()에 대해 설명하고 있습니다.

UnFlatten()은 0개 이상의 요소로 구성된 1D 이상의 D 텐서에 0개 이상의 차원을 추가하여 아래와 같이 0개 이상의 요소로 구성된 1D 이상의 D 텐서를 얻을 수 있습니다.

*메모:

  • 초기화를 위한 첫 번째 인수는 희미함(Required-Type:int)입니다.
  • 초기화를 위한 두 번째 인수는 unFlattened_size(필수 유형:tuple 또는 int 목록)입니다.
  • 첫 번째 인수는 입력(필수 유형: int, float, complex 또는 bool의 텐서)입니다. *-1 크기를 추론하고 조정합니다.
  • UnFlatten()과 unFlatten()의 차이점은 다음과 같습니다.
    • Unplatten()에는 unplatten()의 크기 인수와 동일한 unflatterned_size 인수가 있습니다.
    • 기본적으로 Unplatten()은 모델을 정의하는 데 사용되는 반면, unFlatten()은 모델을 정의하는 데 사용되지 않습니다.
import torch
from torch import nn

unflatten = nn.Unflatten()
unflatten
# Unflatten(dim=0, unflattened_size=(6,))

unflatten.dim
# 0

unflatten.unflattened_size
# (6,)

my_tensor = torch.tensor([7, 1, -8, 3, -6, 0])

unflatten = nn.Unflatten(dim=0, unflattened_size=(6,))
unflatten = nn.Unflatten(dim=0, unflattened_size=(-1,))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(6,))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(-1,))
unflatten(input=my_tensor)
# tensor([7, 1, -8, 3, -6, 0])

unflatten = nn.Unflatten(dim=0, unflattened_size=(1, 6))
unflatten = nn.Unflatten(dim=0, unflattened_size=(-1, 6))
unflatten = nn.Unflatten(dim=0, unflattened_size=(1, -1))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(1, 6))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(-1, 6))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(1, -1))
unflatten(input=my_tensor)
# tensor([[7, 1, -8, 3, -6, 0]])

unflatten = nn.Unflatten(dim=0, unflattened_size=(2, 3))
unflatten = nn.Unflatten(dim=0, unflattened_size=(2, -1))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(2, 3))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(2, -1))
unflatten(input=my_tensor)
# tensor([[7, 1, -8], [3, -6, 0]])

unflatten = nn.Unflatten(dim=0, unflattened_size=(3, 2))
unflatten = nn.Unflatten(dim=0, unflattened_size=(3, -1))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(3, 2))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(3, -1))
unflatten(input=my_tensor)
# tensor([[7, 1], [-8, 3], [-6, 0]])

unflatten = nn.Unflatten(dim=0, unflattened_size=(6, 1))
unflatten = nn.Unflatten(dim=0, unflattened_size=(6, -1))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(6, 1))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(6, -1))
unflatten(input=my_tensor)
# tensor([[7], [1], [-8], [3], [-6], [0]])

unflatten = nn.Unflatten(dim=0, unflattened_size=(1, 2, 3))
unflatten = nn.Unflatten(dim=0, unflattened_size=(-1, 2, 3))
unflatten = nn.Unflatten(dim=0, unflattened_size=(1, -1, 3))
unflatten = nn.Unflatten(dim=0, unflattened_size=(1, 2, -1))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(1, 2, 3))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(-1, 2, 3))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(1, -1, 3))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(1, 2, -1))
unflatten(input=my_tensor)
# tensor([[[7, 1, -8], [3, -6, 0]]])
etc

my_tensor = torch.tensor([[7, 1, -8], [3, -6, 0]])

unflatten = nn.Unflatten(dim=0, unflattened_size=(2,))
unflatten = nn.Unflatten(dim=0, unflattened_size=(-1,))
unflatten = nn.Unflatten(dim=1, unflattened_size=(3,))
unflatten = nn.Unflatten(dim=1, unflattened_size=(-1,))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(3,))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(-1,))
unflatten = nn.Unflatten(dim=-2, unflattened_size=(2,))
unflatten = nn.Unflatten(dim=-2, unflattened_size=(-1,))
unflatten(input=my_tensor)
# tensor([[7, 1, -8], [3, -6, 0]])

unflatten = nn.Unflatten(dim=0, unflattened_size=(1, 2))
unflatten = nn.Unflatten(dim=0, unflattened_size=(-1, 2))
unflatten = nn.Unflatten(dim=-2, unflattened_size=(1, 2))
unflatten = nn.Unflatten(dim=-2, unflattened_size=(-1, 2))
unflatten(input=my_tensor)
# tensor([[[7, 1, -8], [3, -6, 0]]])

unflatten = nn.Unflatten(dim=0, unflattened_size=(2, 1))
unflatten = nn.Unflatten(dim=0, unflattened_size=(2, -1))
unflatten = nn.Unflatten(dim=1, unflattened_size=(1, 3))
unflatten = nn.Unflatten(dim=1, unflattened_size=(-1, 3))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(1, 3))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(-1, 3))
unflatten = nn.Unflatten(dim=-2, unflattened_size=(2, 1))
unflatten = nn.Unflatten(dim=-2, unflattened_size=(2, -1))
unflatten(input=my_tensor)
# tensor([[[7, 1, -8]], [[3, -6, 0]]])

unflatten = nn.Unflatten(dim=1, unflattened_size=(3, 1))
unflatten = nn.Unflatten(dim=1, unflattened_size=(3, -1))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(3, 1))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(3, -1))
unflatten(input=my_tensor)
# tensor([[[7], [1], [-8]], [[3], [-6], [0]]])

unflatten = nn.Unflatten(dim=0, unflattened_size=(1, 1, 2))
unflatten = nn.Unflatten(dim=0, unflattened_size=(-1, 1, 2))
unflatten = nn.Unflatten(dim=0, unflattened_size=(1, -1, 2))
unflatten = nn.Unflatten(dim=0, unflattened_size=(1, 1, -1))
unflatten = nn.Unflatten(dim=-2, unflattened_size=(1, 1, 2))
unflatten = nn.Unflatten(dim=-2, unflattened_size=(-1, 1, 2))
unflatten = nn.Unflatten(dim=-2, unflattened_size=(1, -1, 2))
unflatten = nn.Unflatten(dim=-2, unflattened_size=(1, 1, -1))
unflatten(input=my_tensor)
# tensor([[[[7, 1, -8], [3, -6, 0]]]])

unflatten = nn.Unflatten(dim=1, unflattened_size=(1, 1, 3))
unflatten = nn.Unflatten(dim=1, unflattened_size=(-1, 1, 3))
unflatten = nn.Unflatten(dim=1, unflattened_size=(1, -1, 3))
unflatten = nn.Unflatten(dim=1, unflattened_size=(1, 1, -1))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(1, 1, 3))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(-1, 1, 3))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(1, -1, 3))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(1, 1, -1))
unflatten(input=my_tensor)
# tensor([[[[7, 1, -8]]], [[[3, -6, 0]]]])

my_tensor = torch.tensor([[7., 1., -8.], [3., -6., 0.]])

unflatten = nn.Unflatten(dim=0, unflattened_size=(2,))
unflatten(input=my_tensor)
# tensor([[7., 1., -8.], [3., -6., 0.]])

my_tensor = torch.tensor([[7.+0.j, 1.+0.j, -8.+0.j],
                          [3.+0.j, -6.+0.j, 0.+0.j]])
unflatten = nn.Unflatten(dim=0, unflattened_size=(2,))
unflatten(input=my_tensor)
# tensor([[7.+0.j, 1.+0.j, -8.+0.j],
#         [3.+0.j, -6.+0.j, 0.+0.j]])

my_tensor = torch.tensor([[True, False, True], [False, True, False]])

unflatten = nn.Unflatten(dim=0, unflattened_size=(2,))
unflatten(input=my_tensor)
# tensor([[True, False, True], [False, True, False]])
로그인 후 복사

위 내용은 PyTorch에서 평탄화 해제의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

뜨거운 기사 태그

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

HTML을 구문 분석하기 위해 아름다운 수프를 어떻게 사용합니까? HTML을 구문 분석하기 위해 아름다운 수프를 어떻게 사용합니까? Mar 10, 2025 pm 06:54 PM

HTML을 구문 분석하기 위해 아름다운 수프를 어떻게 사용합니까?

파이썬의 이미지 필터링 파이썬의 이미지 필터링 Mar 03, 2025 am 09:44 AM

파이썬의 이미지 필터링

파이썬에서 파일을 다운로드하는 방법 파이썬에서 파일을 다운로드하는 방법 Mar 01, 2025 am 10:03 AM

파이썬에서 파일을 다운로드하는 방법

Python을 사용하여 텍스트 파일의 ZIPF 배포를 찾는 방법 Python을 사용하여 텍스트 파일의 ZIPF 배포를 찾는 방법 Mar 05, 2025 am 09:58 AM

Python을 사용하여 텍스트 파일의 ZIPF 배포를 찾는 방법

플라스크에 소개 : 연락처 페이지 추가 플라스크에 소개 : 연락처 페이지 추가 Feb 28, 2025 am 10:03 AM

플라스크에 소개 : 연락처 페이지 추가

Python을 사용하여 PDF 문서를 사용하는 방법 Python을 사용하여 PDF 문서를 사용하는 방법 Mar 02, 2025 am 09:54 AM

Python을 사용하여 PDF 문서를 사용하는 방법

Django 응용 프로그램에서 Redis를 사용하여 캐시하는 방법 Django 응용 프로그램에서 Redis를 사용하여 캐시하는 방법 Mar 02, 2025 am 10:10 AM

Django 응용 프로그램에서 Redis를 사용하여 캐시하는 방법

Tensorflow 또는 Pytorch로 딥 러닝을 수행하는 방법은 무엇입니까? Tensorflow 또는 Pytorch로 딥 러닝을 수행하는 방법은 무엇입니까? Mar 10, 2025 pm 06:52 PM

Tensorflow 또는 Pytorch로 딥 러닝을 수행하는 방법은 무엇입니까?

See all articles