하위 집합을 선택할 때 항상 Pandas DataFrame을 복사해야 하는 이유는 무엇입니까?
Pandas에서 데이터 프레임 복사의 중요성 이해
Pandas에서는 데이터 프레임의 일부를 선택할 때 '.copy()'를 사용하는 것이 일반적입니다. ' 원본 데이터 프레임의 복사본을 만드는 방법입니다. 이 접근 방식을 사용하면 하위 집합에 대한 변경 사항이 상위 데이터 프레임에 영향을 주지 않습니다.
복사해야 하는 이유
기본적으로 데이터 프레임을 인덱싱하면 복사본이 아닌 원본 데이터 프레임의 보기입니다. 이는 하위 집합에 대한 모든 수정 사항이 상위 데이터 프레임에 직접적인 영향을 미친다는 것을 의미합니다. 상위 데이터 프레임의 무결성을 유지하려면 '.copy()' 메서드를 사용하여 복사본을 생성하는 것이 중요합니다.
복사하지 않을 경우의 결과
다음을 고려하세요. 다음 코드 조각:
df = pd.DataFrame({'x': [1, 2]}) df_sub = df.iloc[0:1] df_sub.x = -1
이 예에서 df_sub는 df의 뷰입니다. 결과적으로 df_sub.x를 -1로 설정하면 df.x도 수정됩니다.
print(df) x 0 -1 1 2
복사 이점
데이터 프레임을 복사하면 상위 데이터 프레임이 그대로 남아있습니다. 이는 데이터 프레임에서 여러 작업이 수행될 때 특히 중요하며 나중에 분석하거나 비교할 수 있도록 원본 데이터를 보존하는 것이 중요합니다.
df_sub_copy = df.iloc[0:1].copy() df_sub_copy.x = -1 print(df) x 0 1 1 2
이 수정된 코드 조각에서 df_sub_copy는 df의 복사본입니다. 결과적으로 df_sub_copy.x를 변경해도 df에는 영향이 없습니다.
참고: 최신 버전의 Pandas에서는 데이터 프레임 인덱싱 동작이 변경되었다는 점에 유의하는 것이 중요합니다. Pandas 1.0 이하에서는 데이터 프레임을 인덱싱하면 기본적으로 복사본이 반환됩니다. 그러나 Pandas 1.1 이상에서는 인덱싱이 뷰를 반환합니다. 여러 버전에서 일관된 동작을 보장하려면 데이터 프레임의 하위 집합을 생성할 때 항상 '.copy()' 메서드를 사용하는 것이 좋습니다.
위 내용은 하위 집합을 선택할 때 항상 Pandas DataFrame을 복사해야 하는 이유는 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.

Pythonlistsarepartoftsandardlardlibrary, whileraysarenot.listsarebuilt-in, 다재다능하고, 수집 할 수있는 반면, arraysarreprovidedByTearRaymoduledlesscommonlyusedDuetolimitedFunctionality.

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

과학 컴퓨팅에서 Python의 응용 프로그램에는 데이터 분석, 머신 러닝, 수치 시뮬레이션 및 시각화가 포함됩니다. 1.numpy는 효율적인 다차원 배열 및 수학적 함수를 제공합니다. 2. Scipy는 Numpy 기능을 확장하고 최적화 및 선형 대수 도구를 제공합니다. 3. 팬더는 데이터 처리 및 분석에 사용됩니다. 4. matplotlib는 다양한 그래프와 시각적 결과를 생성하는 데 사용됩니다.

웹 개발에서 Python의 주요 응용 프로그램에는 Django 및 Flask 프레임 워크 사용, API 개발, 데이터 분석 및 시각화, 머신 러닝 및 AI 및 성능 최적화가 포함됩니다. 1. Django 및 Flask 프레임 워크 : Django는 복잡한 응용 분야의 빠른 개발에 적합하며 플라스크는 소형 또는 고도로 맞춤형 프로젝트에 적합합니다. 2. API 개발 : Flask 또는 DjangorestFramework를 사용하여 RESTFULAPI를 구축하십시오. 3. 데이터 분석 및 시각화 : Python을 사용하여 데이터를 처리하고 웹 인터페이스를 통해 표시합니다. 4. 머신 러닝 및 AI : 파이썬은 지능형 웹 애플리케이션을 구축하는 데 사용됩니다. 5. 성능 최적화 : 비동기 프로그래밍, 캐싱 및 코드를 통해 최적화
