Matplotlib를 사용하여 사용자 정의 색상 맵을 만들고 색상 눈금을 표시하는 방법은 무엇입니까?
Matplotlib 및 Color Scale Plot을 사용한 사용자 정의 Colormap
소개
사용자 정의 색상맵을 사용하면 데이터를 개인화된 시각화할 수 있습니다. 이 문서에서는 빨간색에서 보라색, 파란색으로 원활하게 전환되고 -2와 2 사이의 값으로 매핑되는 자체 색상맵을 만드는 것과 관련된 사용자의 질문을 다룹니다. 목표는 플롯의 데이터 포인트에 색상을 지정하고 그에 따른 색상 스케일을 표시하는 것입니다.
색상 맵 생성
연속적인 색상 스케일을 생성하기 위해 개별 ListedColormap 대신 LinearSegmentedColormap이 사용됩니다. 색상 목록을 from_list 메소드에 전달하여 이 사용자 정의 색상맵을 생성할 수 있습니다.
import matplotlib.pyplot as plt import matplotlib.colors colors = ["red", "violet", "blue"] cmap = matplotlib.colors.LinearSegmentedColormap.from_list("", colors)
색상을 값에 매핑
색상을 데이터 값에 매핑하려면 정규화 함수가 필요합니다. Normalize 함수는 값을 컬러맵에 적합한 범위로 변환합니다.
norm = plt.Normalize(-2, 2)
사용자 정의 색상맵으로 플로팅
사용자 정의 색상맵을 사용하여 플롯의 점에 색상을 지정하려면:
plt.scatter(x, y, c=c, cmap=cmap, norm=norm)
색상 스케일 시각화
색상 스케일을 옆에 표시하려면 줄거리:
plt.colorbar()
임의 데이터로 일반화
이 방법은 모든 값 집합을 색상에 매핑하도록 일반화될 수 있습니다.
cvals = [-2., -1, 2] colors = ["red", "violet", "blue"] tuples = list(zip(map(norm, cvals), colors)) cmap = matplotlib.colors.LinearSegmentedColormap.from_list("", tuples)
위 내용은 Matplotlib를 사용하여 사용자 정의 색상 맵을 만들고 색상 눈금을 표시하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

Python은 데이터 과학, 웹 개발 및 자동화 작업에 적합한 반면 C는 시스템 프로그래밍, 게임 개발 및 임베디드 시스템에 적합합니다. Python은 단순성과 강력한 생태계로 유명하며 C는 고성능 및 기본 제어 기능으로 유명합니다.

2 시간 이내에 파이썬의 기본 사항을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우십시오. 이를 통해 간단한 파이썬 프로그램 작성을 시작하는 데 도움이됩니다.

Python은 게임 및 GUI 개발에서 탁월합니다. 1) 게임 개발은 Pygame을 사용하여 드로잉, 오디오 및 기타 기능을 제공하며 2D 게임을 만드는 데 적합합니다. 2) GUI 개발은 Tkinter 또는 PYQT를 선택할 수 있습니다. Tkinter는 간단하고 사용하기 쉽고 PYQT는 풍부한 기능을 가지고 있으며 전문 개발에 적합합니다.

2 시간 이내에 Python의 기본 프로그래밍 개념과 기술을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우기, 2. 마스터 제어 흐름 (조건부 명세서 및 루프), 3. 기능의 정의 및 사용을 이해하십시오. 4. 간단한 예제 및 코드 스 니펫을 통해 Python 프로그래밍을 신속하게 시작하십시오.

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

Python은 웹 개발, 데이터 과학, 기계 학습, 자동화 및 스크립팅 분야에서 널리 사용됩니다. 1) 웹 개발에서 Django 및 Flask 프레임 워크는 개발 프로세스를 단순화합니다. 2) 데이터 과학 및 기계 학습 분야에서 Numpy, Pandas, Scikit-Learn 및 Tensorflow 라이브러리는 강력한 지원을 제공합니다. 3) 자동화 및 스크립팅 측면에서 Python은 자동화 된 테스트 및 시스템 관리와 같은 작업에 적합합니다.

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

Python은 초보자부터 고급 개발자에 이르기까지 모든 요구에 적합한 단순성과 힘에 호의적입니다. 다목적 성은 다음과 같이 반영됩니다. 1) 배우고 사용하기 쉽고 간단한 구문; 2) Numpy, Pandas 등과 같은 풍부한 라이브러리 및 프레임 워크; 3) 다양한 운영 체제에서 실행할 수있는 크로스 플랫폼 지원; 4) 작업 효율성을 향상시키기위한 스크립팅 및 자동화 작업에 적합합니다.
