Photoshop에서는 매크로를 사용하여 다양한 블렌드 모드를 어떻게 달성합니까?
Photoshop의 이미지 블렌딩 기법
Photoshop에서 이미지 블렌딩에는 다양한 블렌드 모드를 사용하여 서로 다른 효과를 내는 방식으로 두 이미지를 픽셀 단위로 결합하는 작업이 포함됩니다. 각 혼합 모드는 각 픽셀의 개별 색상 채널(빨간색, 녹색 및 파란색)에서 작동합니다.
Photoshop에서는 특정 매크로를 사용하여 이러한 혼합 모드를 실행합니다.
#define ChannelBlend_Normal(A,B) ((uint8)(A)) #define ChannelBlend_Lighten(A,B) ((uint8)((B > A) ? B:A)) #define ChannelBlend_Darken(A,B) ((uint8)((B > A) ? A:B)) #define ChannelBlend_Multiply(A,B) ((uint8)((A * B) / 255)) #define ChannelBlend_Average(A,B) ((uint8)((A + B) / 2)) #define ChannelBlend_Add(A,B) ((uint8)(min(255, (A + B)))) #define ChannelBlend_Subtract(A,B) ((uint8)((A + B < 255) ? 0:(A + B - 255))) #define ChannelBlend_Difference(A,B) ((uint8)(abs(A - B))) #define ChannelBlend_Negation(A,B) ((uint8)(255 - abs(255 - A - B))) #define ChannelBlend_Screen(A,B) ((uint8)(255 - (((255 - A) * (255 - B)) >> 8))) #define ChannelBlend_Exclusion(A,B) ((uint8)(A + B - 2 * A * B / 255)) #define ChannelBlend_Overlay(A,B) ((uint8)((B < 128) ? (2 * A * B / 255):(255 - 2 * (255 - A) * (255 - B) / 255))) #define ChannelBlend_SoftLight(A,B) ((uint8)((B < 128)?(2*((A>>1)+64))*((float)B/255):(255-(2*(255-((A>>1)+64))*(float)(255-B)/255)))) #define ChannelBlend_HardLight(A,B) (ChannelBlend_Overlay(B,A)) #define ChannelBlend_ColorDodge(A,B) ((uint8)((B == 255) ? B:min(255, ((A << 8 ) / (255 - B))))) #define ChannelBlend_ColorBurn(A,B) ((uint8)((B == 0) ? B:max(0, (255 - ((255 - A) << 8 ) / B)))) #define ChannelBlend_LinearDodge(A,B)(ChannelBlend_Add(A,B)) #define ChannelBlend_LinearBurn(A,B) (ChannelBlend_Subtract(A,B)) #define ChannelBlend_LinearLight(A,B)((uint8)(B < 128)?ChannelBlend_LinearBurn(A,(2 * B)):ChannelBlend_LinearDodge(A,(2 * (B - 128)))) #define ChannelBlend_VividLight(A,B) ((uint8)(B < 128)?ChannelBlend_ColorBurn(A,(2 * B)):ChannelBlend_ColorDodge(A,(2 * (B - 128)))) #define ChannelBlend_PinLight(A,B) ((uint8)(B < 128)?ChannelBlend_Darken(A,(2 * B)):ChannelBlend_Lighten(A,(2 * (B - 128)))) #define ChannelBlend_HardMix(A,B) ((uint8)((ChannelBlend_VividLight(A,B) < 128) ? 0:255)) #define ChannelBlend_Reflect(A,B) ((uint8)((B == 255) ? B:min(255, (A * A / (255 - B))))) #define ChannelBlend_Glow(A,B) (ChannelBlend_Reflect(B,A)) #define ChannelBlend_Phoenix(A,B) ((uint8)(min(A,B) - max(A,B) + 255))
RGB를 혼합하려면 다음 매크로를 사용하는 픽셀:
ImageTColorR = ChannelBlend_Glow(ImageAColorR, ImageBColorR); ImageTColorB = ChannelBlend_Glow(ImageAColorB, ImageBColorB); ImageTColorG = ChannelBlend_Glow(ImageAColorG, ImageBColorG); ImageTColor = RGB(ImageTColorR, ImageTColorB, ImageTColorG);
불투명도를 원하는 경우(50% 불투명도):
ImageTColorR = ChannelBlend_AlphaF(ImageAColorR, ImageBColorR, Blend_Subtract, 0.5F);
버퍼를 사용하면 세 가지 색상 채널 모두에 대한 혼합을 단순화할 수 있습니다.
#define ColorBlend_Buffer(T,A,B,M) (T)[0] = ChannelBlend_##M((A)[0], (B)[0]), (T)[1] = ChannelBlend_##M((A)[1], (B)[1]), (T)[2] = ChannelBlend_##M((A)[2], (B)[2])
공통 혼합 모드용 매크로:
#define ColorBlend_Normal(T,A,B) (ColorBlend_Buffer(T,A,B,Normal)) #define ColorBlend_Lighten(T,A,B) (ColorBlend_Buffer(T,A,B,Lighten)) #define ColorBlend_Darken(T,A,B) (ColorBlend_Buffer(T,A,B,Darken)) #define ColorBlend_Multiply(T,A,B) (ColorBlend_Buffer(T,A,B,Multiply)) #define ColorBlend_Average(T,A,B) (ColorBlend_Buffer(T,A,B,Average)) #define ColorBlend_Add(T,A,B) (ColorBlend_Buffer(T,A,B,Add)) #define ColorBlend_Subtract(T,A,B) (ColorBlend_Buffer(T,A,B,Subtract)) #define ColorBlend_Difference(T,A,B) (ColorBlend_Buffer(T,A,B,Difference)) #define ColorBlend_Negation(T,A,B) (ColorBlend_Buffer(T,A,B,Negation)) #define ColorBlend_Screen(T,A,B) (ColorBlend_Buffer(T,A,B,Screen))
위 내용은 Photoshop에서는 매크로를 사용하여 다양한 블렌드 모드를 어떻게 달성합니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

C#과 C의 역사와 진화는 독특하며 미래의 전망도 다릅니다. 1.C는 1983 년 Bjarnestroustrup에 의해 발명되어 객체 지향 프로그래밍을 C 언어에 소개했습니다. Evolution 프로세스에는 자동 키워드 소개 및 Lambda Expressions 소개 C 11, C 20 도입 개념 및 코 루틴과 같은 여러 표준화가 포함되며 향후 성능 및 시스템 수준 프로그래밍에 중점을 둘 것입니다. 2.C#은 2000 년 Microsoft에 의해 출시되었으며 C와 Java의 장점을 결합하여 진화는 단순성과 생산성에 중점을 둡니다. 예를 들어, C#2.0은 제네릭과 C#5.0 도입 된 비동기 프로그래밍을 소개했으며, 이는 향후 개발자의 생산성 및 클라우드 컴퓨팅에 중점을 둘 것입니다.

C# 및 C 및 개발자 경험의 학습 곡선에는 상당한 차이가 있습니다. 1) C#의 학습 곡선은 비교적 평평하며 빠른 개발 및 기업 수준의 응용 프로그램에 적합합니다. 2) C의 학습 곡선은 가파르고 고성능 및 저수준 제어 시나리오에 적합합니다.

C는 XML과 타사 라이브러리 (예 : TinyXML, Pugixml, Xerces-C)와 상호 작용합니다. 1) 라이브러리를 사용하여 XML 파일을 구문 분석하고 C- 처리 가능한 데이터 구조로 변환하십시오. 2) XML을 생성 할 때 C 데이터 구조를 XML 형식으로 변환하십시오. 3) 실제 애플리케이션에서 XML은 종종 구성 파일 및 데이터 교환에 사용되어 개발 효율성을 향상시킵니다.

C에서 정적 분석의 적용에는 주로 메모리 관리 문제 발견, 코드 로직 오류 확인 및 코드 보안 개선이 포함됩니다. 1) 정적 분석은 메모리 누출, 이중 릴리스 및 초기화되지 않은 포인터와 같은 문제를 식별 할 수 있습니다. 2) 사용하지 않은 변수, 데드 코드 및 논리적 모순을 감지 할 수 있습니다. 3) Coverity와 같은 정적 분석 도구는 버퍼 오버플로, 정수 오버플로 및 안전하지 않은 API 호출을 감지하여 코드 보안을 개선 할 수 있습니다.

C는 여전히 현대 프로그래밍과 관련이 있습니다. 1) 고성능 및 직접 하드웨어 작동 기능은 게임 개발, 임베디드 시스템 및 고성능 컴퓨팅 분야에서 첫 번째 선택이됩니다. 2) 스마트 포인터 및 템플릿 프로그래밍과 같은 풍부한 프로그래밍 패러다임 및 현대적인 기능은 유연성과 효율성을 향상시킵니다. 학습 곡선은 가파르지만 강력한 기능은 오늘날의 프로그래밍 생태계에서 여전히 중요합니다.

C에서 Chrono 라이브러리를 사용하면 시간과 시간 간격을보다 정확하게 제어 할 수 있습니다. 이 도서관의 매력을 탐구합시다. C의 크로노 라이브러리는 표준 라이브러리의 일부로 시간과 시간 간격을 다루는 현대적인 방법을 제공합니다. 시간과 C 시간으로 고통받는 프로그래머에게는 Chrono가 의심 할 여지없이 혜택입니다. 코드의 가독성과 유지 가능성을 향상시킬뿐만 아니라 더 높은 정확도와 유연성을 제공합니다. 기본부터 시작합시다. Chrono 라이브러리에는 주로 다음 주요 구성 요소가 포함됩니다. std :: Chrono :: System_Clock : 현재 시간을 얻는 데 사용되는 시스템 클럭을 나타냅니다. STD :: 크론

C의 미래는 병렬 컴퓨팅, 보안, 모듈화 및 AI/기계 학습에 중점을 둘 것입니다. 1) 병렬 컴퓨팅은 코 루틴과 같은 기능을 통해 향상 될 것입니다. 2)보다 엄격한 유형 검사 및 메모리 관리 메커니즘을 통해 보안이 향상 될 것입니다. 3) 변조는 코드 구성 및 편집을 단순화합니다. 4) AI 및 머신 러닝은 C가 수치 컴퓨팅 및 GPU 프로그래밍 지원과 같은 새로운 요구에 적응하도록 촉구합니다.

c is nontdying; it'sevolving.1) c COMINGDUETOITSTIONTIVENICICICICINICE INPERFORMICALEPPLICATION.2) thelugageIscontinuousUllyUpdated, witcentfeatureslikemodulesandCoroutinestoimproveusActionalance.3) despitechallen
