내 F-점수가 Python에서 'UndefineMetricWarning'을 발생시키는 이유는 무엇이며 어떻게 해결합니까?
F-점수 경고: 정의되지 않은 측정항목 및 누락된 예측 샘플
분류 작업의 맥락에서 F-점수 측정항목이 일반적으로 사용됩니다. 모델 성능을 평가합니다. 그러나 "UndefineMetricWarning: F-점수는 잘못 정의되었습니다." 오류가 발생하면 예측된 샘플이 없기 때문에 특정 레이블에 대해 F-점수를 계산할 수 없음을 나타냅니다.
이 문제는 레이블이 다음과 같은 경우에 발생합니다. 실제 레이블 세트(y_test)에 존재하는 것은 예측된 레이블 세트(y_pred)에 나타나지 않습니다. 결과적으로 이러한 레이블에 대한 F-점수를 계산하면 정의되지 않은 값이 생성됩니다. 이 상황을 처리하기 위해 scikit-learn은 이러한 라벨의 F-점수에 0.0 값을 할당합니다.
이 시나리오를 관찰하는 한 가지 방법은 예제를 이용하는 것입니다. '2' 라벨이 y_test에는 있지만 y_pred에는 없는 상황을 생각해 보세요.
>>> set(y_test) - set(y_pred) {2}
'2' 라벨에 대한 예측 샘플이 없으므로 이 라벨의 F 점수는 0.0으로 간주됩니다. 계산에는 점수 0이 포함되므로 scikit-learn은 정의되지 않은 측정항목에 대해 경고하라는 경고를 표시합니다.
이 경고는 처음 발생할 때만 발생합니다. 이 동작은 특정 경고가 한 번만 표시되도록 보장하는 Python의 기본 경고 설정 때문입니다.
이 경고를 표시하지 않으려면 warnings.filterwarnings('ignore')를 사용하여 비활성화할 수 있습니다.
import warnings warnings.filterwarnings('ignore')
또는 예측되지 않은 라벨을 제외하고 관심 라벨을 명시적으로 지정할 수도 있습니다. 샘플:
>>> metrics.f1_score(y_test, y_pred, average='weighted', labels=np.unique(y_pred)) 0.91076923076923078
실제로 예측된 레이블을 지정하면 경고를 피할 수 있습니다.
위 내용은 내 F-점수가 Python에서 'UndefineMetricWarning'을 발생시키는 이유는 무엇이며 어떻게 해결합니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











Python은 데이터 과학, 웹 개발 및 자동화 작업에 적합한 반면 C는 시스템 프로그래밍, 게임 개발 및 임베디드 시스템에 적합합니다. Python은 단순성과 강력한 생태계로 유명하며 C는 고성능 및 기본 제어 기능으로 유명합니다.

2 시간 이내에 파이썬의 기본 사항을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우십시오. 이를 통해 간단한 파이썬 프로그램 작성을 시작하는 데 도움이됩니다.

Python은 게임 및 GUI 개발에서 탁월합니다. 1) 게임 개발은 Pygame을 사용하여 드로잉, 오디오 및 기타 기능을 제공하며 2D 게임을 만드는 데 적합합니다. 2) GUI 개발은 Tkinter 또는 PYQT를 선택할 수 있습니다. Tkinter는 간단하고 사용하기 쉽고 PYQT는 풍부한 기능을 가지고 있으며 전문 개발에 적합합니다.

2 시간 이내에 Python의 기본 프로그래밍 개념과 기술을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우기, 2. 마스터 제어 흐름 (조건부 명세서 및 루프), 3. 기능의 정의 및 사용을 이해하십시오. 4. 간단한 예제 및 코드 스 니펫을 통해 Python 프로그래밍을 신속하게 시작하십시오.

Python은 웹 개발, 데이터 과학, 기계 학습, 자동화 및 스크립팅 분야에서 널리 사용됩니다. 1) 웹 개발에서 Django 및 Flask 프레임 워크는 개발 프로세스를 단순화합니다. 2) 데이터 과학 및 기계 학습 분야에서 Numpy, Pandas, Scikit-Learn 및 Tensorflow 라이브러리는 강력한 지원을 제공합니다. 3) 자동화 및 스크립팅 측면에서 Python은 자동화 된 테스트 및 시스템 관리와 같은 작업에 적합합니다.

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.
