C 템플릿 메타프로그래밍은 Turing-Complete인가요?
C 템플릿은 Turing-complete인가요?
C 템플릿은 컴파일 타임에 Turing-complete하다는 주장이 널리 퍼져 있습니다. 이는 템플릿을 사용하여 계산 가능한 모든 함수를 표현하고 실행할 수 있음을 의미합니다.
계산의 예
다음은 C로 구현된 튜링 기계의 중요한 예입니다. 11 템플릿 사용:
#include <iostream> template<bool C, typename A, typename B> struct Conditional { typedef A type; }; template<typename A, typename B> struct Conditional<false, A, B> { typedef B type; }; template<typename...> struct ParameterPack; template<bool C, typename = void> struct EnableIf { }; template<typename Type> struct EnableIf<true, Type> { typedef Type type; }; template<typename T> struct Identity { typedef T type; }; // define a type list template<typename...> struct TypeList; template<typename T, typename... TT> struct TypeList<T, TT...> { typedef T type; typedef TypeList<TT...> tail; }; template<> struct TypeList<>> { }; template<typename List> struct GetSize; template<typename... Items> struct GetSize<TypeList<Items...>> { enum { value = sizeof...(Items) }; }; template<typename... T> struct ConcatList; template<typename... First, typename... Second, typename... Tail> struct ConcatList<TypeList<First...>, TypeList<Second...>, Tail...> { typedef typename ConcatList<TypeList<First..., Second...>, Tail...>::type type; }; template<typename T> struct ConcatList<T> { typedef T type; }; template<typename NewItem, typename List> struct AppendItem; template<typename NewItem, typename...Items> struct AppendItem<NewItem, TypeList<Items...>> { typedef TypeList<Items..., NewItem> type; }; template<typename NewItem, typename List> struct PrependItem; template<typename NewItem, typename...Items> struct PrependItem<NewItem, TypeList<Items...>> { typedef TypeList<NewItem, Items...> type; }; template<typename List, int N, typename = void> struct GetItem { static_assert(N > 0, "index cannot be negative"); static_assert(GetSize<List>::value > 0, "index too high"); typedef typename GetItem<typename List::tail, N-1>::type type; }; template<typename List> struct GetItem<List, 0> { static_assert(GetSize<List>::value > 0, "index too high"); typedef typename List::type type; }; template<typename List, template<typename, typename...> class Matcher, typename... Keys> struct FindItem { static_assert(GetSize<List>::value > 0, "Could not match any item."); typedef typename List::type current_type; typedef typename Conditional<Matcher<current_type, Keys...>::value, Identity<current_type>, FindItem<typename List::tail, Matcher, Keys...>> ::type::type type; }; template<typename List, int I, typename NewItem> struct ReplaceItem { static_assert(I > 0, "index cannot be negative"); static_assert(GetSize<List>::value > 0, "index too high"); typedef typename PrependItem<typename List::type, typename ReplaceItem<typename List::tail, I-1, NewItem>::type> ::type type; }; template<typename NewItem, typename Type, typename... T> struct ReplaceItem<TypeList<Type, T...>, 0, NewItem> { typedef TypeList<NewItem, T...> type; }; enum Direction { Left = -1, Right = 1 }; template<typename OldState, typename Input, typename NewState, typename Output, Direction Move> struct Rule { typedef OldState old_state; typedef Input input; typedef NewState new_state; typedef Output output; static Direction const direction = Move; }; template<typename A, typename B> struct IsSame { enum { value = false }; }; template<typename A> struct IsSame<A, A> { enum { value = true }; }; template<typename Input, typename State, int Position> struct Configuration { typedef Input input; typedef State state; enum { position = Position }; }; template<int A, int B> struct Max { enum { value = A > B ? A : B }; }; template<int n> struct State { enum { value = n }; static char const * name; }; template<int n> char const* State<n>::name = "unnamed"; struct QAccept { enum { value = -1 }; static char const* name; }; struct QReject { enum { value = -2 }; static char const* name; }; #define DEF_STATE(ID, NAME) \ typedef State<ID> NAME ; \ NAME :: name = #NAME ; template<int n> struct Input { enum { value = n }; static char const * name; template<int... I> struct Generate { typedef TypeList<Input<I>...> type; }; }; template<int n> char const* Input<n>::name = "unnamed"; typedef Input<-1> InputBlank; #define DEF_INPUT(ID, NAME) \ typedef Input<ID> NAME ; \ NAME :: name = #NAME ; template<typename Config, typename Transitions, typename = void> struct Controller { typedef Config config; enum { position = config::position }; typedef typename Conditional< static_cast<int>(GetSize<typename config::input>::value) <= static_cast<int>(position), AppendItem<InputBlank, typename config::input>, Identity<typename config::input>>::type::type input; typedef typename config::state state; typedef typename GetItem<input, position>::type cell; template<typename Item, typename State, typename Cell> struct Matcher { typedef typename Item::old_state checking_state; typedef typename Item::input checking_input; enum { value = IsSame<State, checking_state>::value && IsSame<Cell, checking_input>::value }; }; typedef typename FindItem<Transitions, Matcher, state, cell>::type rule; typedef typename ReplaceItem<input, position, typename rule::output>::type new_input; typedef typename rule::new_state new_state; typedef Configuration<new_input, new_state, Max<position + rule::direction, 0>::value> new_config; typedef Controller<new_config, Transitions> next_step; typedef typename next_step::end_config end_config; typedef typename next_step::end_input end_input; typedef typename next_step::end_state end_state; enum { end_position = next_step::position }; }; template<typename Input, typename State, int Position, typename Transitions> struct Controller<Configuration<Input, State, Position>, Transitions, typename EnableIf<IsSame<State, QAccept>::value || IsSame<State, QReject>::value>::type> { typedef Configuration<Input, State, Position> config; enum { position = config::position }; typedef typename Conditional< static_cast<int>(GetSize<typename config::input>::value) <= static_cast<int>(position), AppendItem<InputBlank, typename config::input>, Identity<typename config::input>>::type::type input; typedef typename config::state state; typedef config end_config; typedef input end_input; typedef state end_state; enum { end_position = position }; }; template<typename Input, typename Transitions, typename StartState> struct TuringMachine { typedef Input input; typedef Transitions transitions; typedef StartState start_state;
위 내용은 C 템플릿 메타프로그래밍은 Turing-Complete인가요?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











C 언어 데이터 구조 : 트리 및 그래프의 데이터 표현은 노드로 구성된 계층 적 데이터 구조입니다. 각 노드에는 데이터 요소와 하위 노드에 대한 포인터가 포함되어 있습니다. 이진 트리는 특별한 유형의 트리입니다. 각 노드에는 최대 두 개의 자식 노드가 있습니다. 데이터는 structtreenode {intdata; structtreenode*왼쪽; structReenode*오른쪽;}을 나타냅니다. 작업은 트리 트래버스 트리 (사전 조정, 인 순서 및 나중에 순서) 검색 트리 삽입 노드 삭제 노드 그래프는 요소가 정점 인 데이터 구조 모음이며 이웃을 나타내는 오른쪽 또는 무의미한 데이터로 모서리를 통해 연결할 수 있습니다.

파일 작동 문제에 대한 진실 : 파일 개방이 실패 : 불충분 한 권한, 잘못된 경로 및 파일이 점유 된 파일. 데이터 쓰기 실패 : 버퍼가 가득 차고 파일을 쓸 수 없으며 디스크 공간이 불충분합니다. 기타 FAQ : 파일이 느리게 이동, 잘못된 텍스트 파일 인코딩 및 이진 파일 읽기 오류.

C 언어 기능은 코드 모듈화 및 프로그램 구축의 기초입니다. 그들은 선언 (함수 헤더)과 정의 (기능 본문)로 구성됩니다. C 언어는 값을 사용하여 기본적으로 매개 변수를 전달하지만 주소 패스를 사용하여 외부 변수를 수정할 수도 있습니다. 함수는 반환 값을 가질 수 있거나 가질 수 있으며 반환 값 유형은 선언과 일치해야합니다. 기능 명명은 낙타 또는 밑줄을 사용하여 명확하고 이해하기 쉬워야합니다. 단일 책임 원칙을 따르고 기능 단순성을 유지하여 유지 관리 및 가독성을 향상시킵니다.

C 언어 함수 이름 정의에는 다음이 포함됩니다. 반환 값 유형, 기능 이름, 매개 변수 목록 및 기능 본문. 키워드와의 충돌을 피하기 위해 기능 이름은 명확하고 간결하며 스타일이 통일되어야합니다. 기능 이름에는 범위가 있으며 선언 후 사용할 수 있습니다. 함수 포인터를 사용하면 기능을 인수로 전달하거나 할당 할 수 있습니다. 일반적인 오류에는 명명 충돌, 매개 변수 유형의 불일치 및 선언되지 않은 함수가 포함됩니다. 성능 최적화는 기능 설계 및 구현에 중점을두고 명확하고 읽기 쉬운 코드는 중요합니다.

C 언어 기능은 재사용 가능한 코드 블록입니다. 입력, 작업을 수행하며 결과를 반환하여 모듈 식 재사성을 향상시키고 복잡성을 줄입니다. 기능의 내부 메커니즘에는 매개 변수 전달, 함수 실행 및 리턴 값이 포함됩니다. 전체 프로세스에는 기능이 인라인과 같은 최적화가 포함됩니다. 좋은 기능은 단일 책임, 소수의 매개 변수, 이름 지정 사양 및 오류 처리 원칙에 따라 작성됩니다. 함수와 결합 된 포인터는 외부 변수 값 수정과 같은보다 강력한 기능을 달성 할 수 있습니다. 함수 포인터는 함수를 매개 변수 또는 저장 주소로 전달하며 함수에 대한 동적 호출을 구현하는 데 사용됩니다. 기능 기능과 기술을 이해하는 것은 효율적이고 유지 가능하며 이해하기 쉬운 C 프로그램을 작성하는 데 핵심입니다.

C35의 계산은 본질적으로 조합 수학이며, 5 개의 요소 중 3 개 중에서 선택된 조합 수를 나타냅니다. 계산 공식은 C53 = 5입니다! / (3! * 2!)는 효율을 향상시키고 오버플로를 피하기 위해 루프에 의해 직접 계산할 수 있습니다. 또한 확률 통계, 암호화, 알고리즘 설계 등의 필드에서 많은 문제를 해결하는 데 조합의 특성을 이해하고 효율적인 계산 방법을 마스터하는 데 중요합니다.

알고리즘은 문제를 해결하기위한 일련의 지침이며 실행 속도 및 메모리 사용량은 다양합니다. 프로그래밍에서 많은 알고리즘은 데이터 검색 및 정렬을 기반으로합니다. 이 기사에서는 여러 데이터 검색 및 정렬 알고리즘을 소개합니다. 선형 검색은 배열 [20,500,10,5,100,1,50]이 있으며 숫자 50을 찾아야한다고 가정합니다. 선형 검색 알고리즘은 대상 값이 발견되거나 전체 배열이 통과 될 때까지 배열의 각 요소를 하나씩 점검합니다. 알고리즘 플로우 차트는 다음과 같습니다. 선형 검색의 의사 코드는 다음과 같습니다. 각 요소를 확인하십시오. 대상 값이 발견되는 경우 : true return false clanue 구현 : #includeintmain (void) {i 포함

C#과 C의 역사와 진화는 독특하며 미래의 전망도 다릅니다. 1.C는 1983 년 Bjarnestroustrup에 의해 발명되어 객체 지향 프로그래밍을 C 언어에 소개했습니다. Evolution 프로세스에는 자동 키워드 소개 및 Lambda Expressions 소개 C 11, C 20 도입 개념 및 코 루틴과 같은 여러 표준화가 포함되며 향후 성능 및 시스템 수준 프로그래밍에 중점을 둘 것입니다. 2.C#은 2000 년 Microsoft에 의해 출시되었으며 C와 Java의 장점을 결합하여 진화는 단순성과 생산성에 중점을 둡니다. 예를 들어, C#2.0은 제네릭과 C#5.0 도입 된 비동기 프로그래밍을 소개했으며, 이는 향후 개발자의 생산성 및 클라우드 컴퓨팅에 중점을 둘 것입니다.
