C에서 Inline Friend 함수의 범위는 무엇입니까?
Inline Friend 함수의 범위 공개
C의 복잡한 미로에서 Inline Friends 함수의 영역을 이해하는 것은 어려운 작업일 수 있습니다. . 이 수수께끼를 풀기 위해 핵심 질문인 이러한 함수의 실제 범위는 무엇인지 살펴보겠습니다.
네임스페이스 범위의 Friend 함수 선언
인라인 friend 함수가 클래스 내에서 선언되었지만 놀랍게도 자동으로 클래스 범위 내에 상주하지 않습니다. 대신, 가장 가까운 둘러싸는 네임스페이스 범위에 존재를 설정합니다. 그러나 이 존재는 자격이 없는 조회와 자격이 있는 조회의 주의 깊은 눈에 의해 가려져 모호하게 남아 있습니다.
인수 종속 조회 입력: 가시성에 대한 경로
표준 조회에서 인라인 친구 함수를 찾기 어렵기 때문에 인수 종속 조회라는 희망의 신호가 존재합니다. (ADL). 이 은밀한 접근 방식을 사용하면 포함 클래스의 표현식이나 객체의 컨텍스트 내에서 정규화되지 않은 함수 호출이 이루어질 때 컴파일러가 숨겨진 함수를 공개할 수 있습니다.
범위 모호성의 코드 표현
범위의 복잡성을 설명하려면 다음 코드를 고려하세요. snippet:
namespace foo { struct bar { friend void baz() {} void call_friend(); }; } int main() { foo::baz(); // can't access through enclosing scope of the class foo::bar::baz(); // can't access through class scope } namespace foo { void bar::call_friend() { baz(); // can't access through member function } }
baz() 함수를 직접 호출하려는 각 시도는 실패하며, 비정규 및 정규 조회를 통한 직접 액세스를 막는 보이지 않는 장벽을 강조합니다. 하지만 call_friend() 멤버 함수에서는 ADL의 자비로운 힘 덕분에 범위 제약에 구애받지 않고 baz()가 빛을 발합니다.
Standard Seal of Authority
이 당황스러운 동작에 대한 명확한 설명은 ISO/IEC 14882:2011에 있습니다. 표준:
"네임스페이스에서 처음 선언된 모든 이름은 해당 네임스페이스의 멤버입니다. 로컬이 아닌 클래스의 친구 선언이 먼저 클래스나 함수를 선언하는 경우 친구 클래스나 함수는 가장 안쪽의 멤버입니다. 해당 네임스페이스 범위에서 일치하는 선언이 제공될 때까지(클래스 정의 부여 이전 또는 이후) 친구의 이름은 정규화되지 않은 조회(3.4.1) 또는 한정된 조회(3.4.3)로 찾을 수 없습니다. 우정) 친구 함수가 호출되면 함수 인수 유형과 관련된 네임스페이스 및 클래스의 함수를 고려하는 이름 조회를 통해 해당 이름을 찾을 수 있습니다."
이 발췌문은 밑줄을 그었습니다. 명시적인 네임스페이스 한정 없이 선언된 friend 함수의 일시적인 특성. 그들은 둘러싸는 네임스페이스의 영묘한 영역에 거주하며 ADL의 신비한 의식을 통해 소환되는 경우를 제외하고는 표준적인 시선에서 포착하기 어렵습니다.
위 내용은 C에서 Inline Friend 함수의 범위는 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

C#과 C의 역사와 진화는 독특하며 미래의 전망도 다릅니다. 1.C는 1983 년 Bjarnestroustrup에 의해 발명되어 객체 지향 프로그래밍을 C 언어에 소개했습니다. Evolution 프로세스에는 자동 키워드 소개 및 Lambda Expressions 소개 C 11, C 20 도입 개념 및 코 루틴과 같은 여러 표준화가 포함되며 향후 성능 및 시스템 수준 프로그래밍에 중점을 둘 것입니다. 2.C#은 2000 년 Microsoft에 의해 출시되었으며 C와 Java의 장점을 결합하여 진화는 단순성과 생산성에 중점을 둡니다. 예를 들어, C#2.0은 제네릭과 C#5.0 도입 된 비동기 프로그래밍을 소개했으며, 이는 향후 개발자의 생산성 및 클라우드 컴퓨팅에 중점을 둘 것입니다.

C# 및 C 및 개발자 경험의 학습 곡선에는 상당한 차이가 있습니다. 1) C#의 학습 곡선은 비교적 평평하며 빠른 개발 및 기업 수준의 응용 프로그램에 적합합니다. 2) C의 학습 곡선은 가파르고 고성능 및 저수준 제어 시나리오에 적합합니다.

C에서 정적 분석의 적용에는 주로 메모리 관리 문제 발견, 코드 로직 오류 확인 및 코드 보안 개선이 포함됩니다. 1) 정적 분석은 메모리 누출, 이중 릴리스 및 초기화되지 않은 포인터와 같은 문제를 식별 할 수 있습니다. 2) 사용하지 않은 변수, 데드 코드 및 논리적 모순을 감지 할 수 있습니다. 3) Coverity와 같은 정적 분석 도구는 버퍼 오버플로, 정수 오버플로 및 안전하지 않은 API 호출을 감지하여 코드 보안을 개선 할 수 있습니다.

C는 XML과 타사 라이브러리 (예 : TinyXML, Pugixml, Xerces-C)와 상호 작용합니다. 1) 라이브러리를 사용하여 XML 파일을 구문 분석하고 C- 처리 가능한 데이터 구조로 변환하십시오. 2) XML을 생성 할 때 C 데이터 구조를 XML 형식으로 변환하십시오. 3) 실제 애플리케이션에서 XML은 종종 구성 파일 및 데이터 교환에 사용되어 개발 효율성을 향상시킵니다.

C에서 Chrono 라이브러리를 사용하면 시간과 시간 간격을보다 정확하게 제어 할 수 있습니다. 이 도서관의 매력을 탐구합시다. C의 크로노 라이브러리는 표준 라이브러리의 일부로 시간과 시간 간격을 다루는 현대적인 방법을 제공합니다. 시간과 C 시간으로 고통받는 프로그래머에게는 Chrono가 의심 할 여지없이 혜택입니다. 코드의 가독성과 유지 가능성을 향상시킬뿐만 아니라 더 높은 정확도와 유연성을 제공합니다. 기본부터 시작합시다. Chrono 라이브러리에는 주로 다음 주요 구성 요소가 포함됩니다. std :: Chrono :: System_Clock : 현재 시간을 얻는 데 사용되는 시스템 클럭을 나타냅니다. STD :: 크론

C의 미래는 병렬 컴퓨팅, 보안, 모듈화 및 AI/기계 학습에 중점을 둘 것입니다. 1) 병렬 컴퓨팅은 코 루틴과 같은 기능을 통해 향상 될 것입니다. 2)보다 엄격한 유형 검사 및 메모리 관리 메커니즘을 통해 보안이 향상 될 것입니다. 3) 변조는 코드 구성 및 편집을 단순화합니다. 4) AI 및 머신 러닝은 C가 수치 컴퓨팅 및 GPU 프로그래밍 지원과 같은 새로운 요구에 적응하도록 촉구합니다.

c is nontdying; it'sevolving.1) c COMINGDUETOITSTIONTIVENICICICICINICE INPERFORMICALEPPLICATION.2) thelugageIscontinuousUllyUpdated, witcentfeatureslikemodulesandCoroutinestoimproveusActionalance.3) despitechallen

C의 DMA는 직접 메모리 액세스 기술인 DirectMemoryAccess를 말하며 하드웨어 장치는 CPU 개입없이 데이터를 메모리로 직접 전송할 수 있습니다. 1) DMA 운영은 하드웨어 장치 및 드라이버에 크게 의존하며 구현 방법은 시스템마다 다릅니다. 2) 메모리에 직접 액세스하면 보안 위험이 발생할 수 있으며 코드의 정확성과 보안이 보장되어야합니다. 3) DMA는 성능을 향상시킬 수 있지만 부적절하게 사용하면 시스템 성능이 저하 될 수 있습니다. 실습과 학습을 통해 우리는 DMA 사용 기술을 습득하고 고속 데이터 전송 및 실시간 신호 처리와 같은 시나리오에서 효과를 극대화 할 수 있습니다.
