Pandas DataFrame을 반복적으로 생성하고 채우는 가장 효율적인 방법은 무엇입니까?
반복 채우기를 위해 빈 Pandas DataFrame 만들기
빈 Pandas DataFrame을 만들고 반복적으로 채우는 것은 데이터 조작에서 일반적인 작업입니다. 그러나 이상적인 접근 방식은 즉시 명확하지 않을 수 있습니다.
행별 DataFrame 증가의 함정
제공하신 코드 조각은 빈 DataFrame을 생성하고 반복적으로 채우는 한 가지 방법입니다. 그러나 이 방법은 비효율적이며 메모리 관련 문제가 발생할 수 있습니다. 그 이유는 각 반복마다 새 행을 생성하므로 메모리 재할당이 필요하기 때문입니다. DataFrame이 커짐에 따라 이 프로세스는 점점 더 복잡해집니다.
선호되는 방법: 목록에 데이터를 누적
선호되는 접근 방식은 목록에 데이터를 축적한 다음 다음을 사용하여 한 단계로 DataFrame을 생성하는 것입니다. pd.DataFrame() 함수. 이 방법은 훨씬 더 효율적이고 메모리 친화적입니다. 작동 방식은 다음과 같습니다.
# Accumulate data in a list data = [] for row in some_function_that_yields_data(): data.append(row) # Create the DataFrame from the list df = pd.DataFrame(data)
목록 누적의 장점
- 계산 효율성: 목록에 추가하는 것이 DataFrame에 추가하는 것보다 훨씬 빠릅니다. 특히 대용량 데이터 세트용.
- 메모리 효율성: 목록은 DataFrame에 비해 메모리를 덜 차지합니다.
- 자동 데이터 유형 추론: pd.DataFrame은 각 열의 데이터 유형을 자동으로 추론하므로 수동으로 유형을 할당하는 번거로움을 덜어줍니다.
- 자동 인덱스 생성: 목록에서 DataFrame을 생성할 때 pandas는 수동 인덱스 관리가 필요 없이 자동으로 RangeIndex를 행 인덱스로 할당합니다.
피해야 할 대안
- 루프 내부에 추가 또는 연결: 이 방법 각각에 필요한 지속적인 메모리 재할당으로 인해 매우 비효율적입니다. 반복.
- 루프 내부: 루프 내부에 추가하거나 연결하는 것과 유사하게, 각 반복마다 df.loc[len(df)]를 사용하면 메모리 오버헤드가 발생합니다.
- NaN의 빈 DataFrame: NaN으로 채워진 빈 DataFrame을 생성하면 객체 데이터 유형이 생성되어 방해가 될 수 있습니다. pandas 작업.
결론
대규모 데이터 세트를 처리할 때는 데이터를 목록에 축적하고 한 단계로 DataFrame을 생성하는 것이 권장되는 접근 방식입니다. 이는 계산 효율성이 높고 메모리 친화적이며 데이터 조작 프로세스를 단순화합니다.
위 내용은 Pandas DataFrame을 반복적으로 생성하고 채우는 가장 효율적인 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

Python은 게임 및 GUI 개발에서 탁월합니다. 1) 게임 개발은 Pygame을 사용하여 드로잉, 오디오 및 기타 기능을 제공하며 2D 게임을 만드는 데 적합합니다. 2) GUI 개발은 Tkinter 또는 PYQT를 선택할 수 있습니다. Tkinter는 간단하고 사용하기 쉽고 PYQT는 풍부한 기능을 가지고 있으며 전문 개발에 적합합니다.

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.

Pythonlistsarepartoftsandardlardlibrary, whileraysarenot.listsarebuilt-in, 다재다능하고, 수집 할 수있는 반면, arraysarreprovidedByTearRaymoduledlesscommonlyusedDuetolimitedFunctionality.

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.
