Python에서 더 빠른 소수 생성을 위해 에라토스테네스의 체를 어떻게 최적화할 수 있습니까?
Python에서 에라토스테네스의 체를 사용하여 소수 생성 최적화
에라토스테네스의 체는 지정된 한도까지 소수를 식별하는 유서 깊은 알고리즘입니다. 구현하기는 쉽지만 큰 제한에 대해서는 놀라울 정도로 느릴 수 있습니다.
느린 구현
다음과 같은 시브의 Python 구현은 효율성 문제에 직면합니다.
def primes_sieve(limit): primes = range(2, limit+1) for i in primes: factors = range(i, limitn, i) for f in factors[1:]: if f in primes: primes.remove(f)
병목 현상은 숫자가 제거됨에 따라 소수 목록의 크기를 계속 조정하는 데 있습니다. Python 목록에서 항목을 제거하려면 후속 요소를 이동해야 하므로 계산 비용이 많이 드는 작업이 됩니다.
사전을 사용한 더 빠른 구현
이 문제를 해결하려면 사전 기반 구현이 필요합니다. 사용할 수 있습니다:
def primes_sieve1(limit): primes = dict() for i in range(2, limit+1): primes[i] = True for i in primes: factors = range(i,limitn, i) for f in factors[1:]: primes[f] = False
이것은 소수 플래그 사전을 유지하여 크기 조정 작업의 필요성을 줄입니다. 그러나 정의되지 않은 순서로 사전 키를 반복하고 소수가 아닌 숫자의 소수가 아닌 요소를 반복적으로 표시하면 효율성이 제한됩니다.
목록을 사용한 수정된 알고리즘
올바른 구현 에라토스테네스의 체(Sieve of Eratosthenes) 알고리즘을 더 자세히 따릅니다:
def primes_sieve2(limit): a = [True] * limit # Initialize the primality list a[0] = a[1] = False for (i, isprime) in enumerate(a): if isprime: yield i for n in range(i*i, limit, i): # Mark factors non-prime a[n] = False
이것은 목록을 유지합니다 소수 플래그를 사용하여 0과 1을 제외한 모든 숫자를 소수로 초기화합니다. 소수의 배수를 소수의 제곱부터 시작하여 소수가 아닌 것으로 표시하여 프로세스를 최적화합니다.
구현 시 효율성 문제를 해결하여, 이 수정된 알고리즘은 큰 제한에서도 소수 생성 속도를 크게 향상시킵니다.
위 내용은 Python에서 더 빠른 소수 생성을 위해 에라토스테네스의 체를 어떻게 최적화할 수 있습니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

Python은 데이터 과학, 웹 개발 및 자동화 작업에 적합한 반면 C는 시스템 프로그래밍, 게임 개발 및 임베디드 시스템에 적합합니다. Python은 단순성과 강력한 생태계로 유명하며 C는 고성능 및 기본 제어 기능으로 유명합니다.

Python은 게임 및 GUI 개발에서 탁월합니다. 1) 게임 개발은 Pygame을 사용하여 드로잉, 오디오 및 기타 기능을 제공하며 2D 게임을 만드는 데 적합합니다. 2) GUI 개발은 Tkinter 또는 PYQT를 선택할 수 있습니다. Tkinter는 간단하고 사용하기 쉽고 PYQT는 풍부한 기능을 가지고 있으며 전문 개발에 적합합니다.

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

Pythonlistsarepartoftsandardlardlibrary, whileraysarenot.listsarebuilt-in, 다재다능하고, 수집 할 수있는 반면, arraysarreprovidedByTearRaymoduledlesscommonlyusedDuetolimitedFunctionality.

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.
