Pandas는 어떻게 문자열 날짜를 DateTime 객체로 효율적으로 변환하고 날짜 기반 필터링을 용이하게 할 수 있습니까?
Pandas에서 문자열을 날짜/시간 형식으로 변환
데이터 분석에서 날짜와 시간을 나타내는 문자열을 처리하는 것은 일반적인 과제입니다. 의미 있는 인사이트를 추출하려면 이러한 문자열을 적절한 날짜/시간 형식으로 변환하는 것이 중요합니다.
문자열을 날짜/시간으로 변환
Pandas는 편리한 방법인 to_datetime()을 제공합니다. 문자열을 날짜/시간 형식으로 변환합니다. 입력 문자열의 형식을 자동으로 감지하여 datetime64 개체로 변환합니다. 예를 들어 날짜와 시간을 나타내는 문자열이 포함된 I_DATE 열이 있는 데이터 프레임을 생각해 보세요.
df['I_DATE'] = ['28-03-2012 2:15:00 PM', '28-03-2012 2:17:28 PM', '28-03-2012 2:50:50 PM']
I_DATE를 날짜/시간 형식으로 변환하려면 간단히 to_datetime()을 사용하세요.
df['I_DATE'] = pd.to_datetime(df['I_DATE'])
출력 datetime64 객체의 열이 됩니다:
0 2012-03-28 14:15:00 1 2012-03-28 14:17:28 2 2012-03-28 14:50:50 Name: I_DATE, dtype: datetime64[ns]
액세스 날짜 구성 요소
문자열이 날짜/시간으로 변환되면 dt 접근자를 사용하여 날짜 및 시간의 특정 구성 요소에 액세스할 수 있습니다. 예를 들어 날짜 구성 요소를 추출하려면
df['I_DATE'].dt.date
은 날짜만 나타내는 datetime64[ns] 개체의 열을 반환합니다. 마찬가지로 dt.time을 사용하여 시간 구성 요소를 검색할 수 있습니다.
날짜 범위를 기준으로 행 필터링
날짜 범위를 기준으로 행을 필터링하려면 다음을 수행합니다. 문자열 연산 > 그리고 <. 예를 들어, I_DATE 열이 특정 범위 내에 있는 행을 선택하려면:
df[(df['I_DATE'] > '2015-02-04') & (df['I_DATE'] < '2015-02-10')]이렇게 하면 I_DATE 열이 지정된 날짜 사이에 속하는 행만 포함하는 데이터프레임이 반환됩니다.
위 내용은 Pandas는 어떻게 문자열 날짜를 DateTime 객체로 효율적으로 변환하고 날짜 기반 필터링을 용이하게 할 수 있습니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











Python은 데이터 과학, 웹 개발 및 자동화 작업에 적합한 반면 C는 시스템 프로그래밍, 게임 개발 및 임베디드 시스템에 적합합니다. Python은 단순성과 강력한 생태계로 유명하며 C는 고성능 및 기본 제어 기능으로 유명합니다.

2 시간 이내에 파이썬의 기본 사항을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우십시오. 이를 통해 간단한 파이썬 프로그램 작성을 시작하는 데 도움이됩니다.

Python은 게임 및 GUI 개발에서 탁월합니다. 1) 게임 개발은 Pygame을 사용하여 드로잉, 오디오 및 기타 기능을 제공하며 2D 게임을 만드는 데 적합합니다. 2) GUI 개발은 Tkinter 또는 PYQT를 선택할 수 있습니다. Tkinter는 간단하고 사용하기 쉽고 PYQT는 풍부한 기능을 가지고 있으며 전문 개발에 적합합니다.

2 시간 이내에 Python의 기본 프로그래밍 개념과 기술을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우기, 2. 마스터 제어 흐름 (조건부 명세서 및 루프), 3. 기능의 정의 및 사용을 이해하십시오. 4. 간단한 예제 및 코드 스 니펫을 통해 Python 프로그래밍을 신속하게 시작하십시오.

Python은 웹 개발, 데이터 과학, 기계 학습, 자동화 및 스크립팅 분야에서 널리 사용됩니다. 1) 웹 개발에서 Django 및 Flask 프레임 워크는 개발 프로세스를 단순화합니다. 2) 데이터 과학 및 기계 학습 분야에서 Numpy, Pandas, Scikit-Learn 및 Tensorflow 라이브러리는 강력한 지원을 제공합니다. 3) 자동화 및 스크립팅 측면에서 Python은 자동화 된 테스트 및 시스템 관리와 같은 작업에 적합합니다.

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.
