미리 정의된 기간을 사용하여 쉘 스크립팅에서 시간 초과 기능을 구현하는 방법은 무엇입니까?
지속 시간이 미리 정의된 시간 초과 기능
쉘 스크립팅에서는 과도한 대기를 피하기 위해 장기 실행 작업을 종료하는 메커니즘을 갖는 것이 유용합니다. . 여기서 직면한 과제는 시간 초과 스크립트 내에서 함수를 래핑하여 지정된 시간 제한을 초과하는 경우 False를 반환하는 것입니다.
한 가지 접근 방식은 미리 정의된 간격 후에 False 응답을 트리거하는 비동기 타이머를 설정하는 것입니다. 다행스럽게도 이러한 솔루션은 signal 라이브러리(UNIX 기반 시스템에서 사용 가능)의 신호 처리기를 사용하여 달성할 수 있습니다.
이 프로세스에는 신호를 활용하는 사용자 정의 데코레이터(@timeout)를 만드는 작업이 포함됩니다. Alarm()은 원하는 시간 간격으로 알람을 설정합니다. 장식된 함수 내에서 알람이 만료되면 TimeoutError 예외가 발생하여 작업이 효과적으로 중단됩니다.
이 솔루션을 코드에 통합하려면 다음 코드를 timeout.py로 저장하고 가져오기:
import errno import os import signal import functools class TimeoutError(Exception): pass def timeout(seconds=10, error_message=os.strerror(errno.ETIME)): def decorator(func): def _handle_timeout(signum, frame): raise TimeoutError(error_message) @functools.wraps(func) def wrapper(*args, **kwargs): signal.signal(signal.SIGALRM, _handle_timeout) signal.alarm(seconds) try: result = func(*args, **kwargs) finally: signal.alarm(0) return result return wrapper return decorator
이제 애플리케이션 코드 내에서 @timeout 데코레이터를 사용하여 잠재적으로 장기 실행되는 함수에 주석을 답니다. 예:
from timeout import timeout # Short timeout @timeout(5) def slow_function(): # ... # Default timeout @timeout def another_slow_function(): # ... # Customize timeout and error message @timeout(30, error_message="Task timed out") def yet_another_slow_function(): # ...
이 접근 방식을 사용하면 함수가 지정된 시간 초과 간격보다 오래 걸리는 경우 TimeoutError가 발생하고 False를 반환하므로 예상치 못한 지연을 적절하게 처리할 수 있습니다.
위 내용은 미리 정의된 기간을 사용하여 쉘 스크립팅에서 시간 초과 기능을 구현하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.

Pythonlistsarepartoftsandardlardlibrary, whileraysarenot.listsarebuilt-in, 다재다능하고, 수집 할 수있는 반면, arraysarreprovidedByTearRaymoduledlesscommonlyusedDuetolimitedFunctionality.

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

과학 컴퓨팅에서 Python의 응용 프로그램에는 데이터 분석, 머신 러닝, 수치 시뮬레이션 및 시각화가 포함됩니다. 1.numpy는 효율적인 다차원 배열 및 수학적 함수를 제공합니다. 2. Scipy는 Numpy 기능을 확장하고 최적화 및 선형 대수 도구를 제공합니다. 3. 팬더는 데이터 처리 및 분석에 사용됩니다. 4. matplotlib는 다양한 그래프와 시각적 결과를 생성하는 데 사용됩니다.

웹 개발에서 Python의 주요 응용 프로그램에는 Django 및 Flask 프레임 워크 사용, API 개발, 데이터 분석 및 시각화, 머신 러닝 및 AI 및 성능 최적화가 포함됩니다. 1. Django 및 Flask 프레임 워크 : Django는 복잡한 응용 분야의 빠른 개발에 적합하며 플라스크는 소형 또는 고도로 맞춤형 프로젝트에 적합합니다. 2. API 개발 : Flask 또는 DjangorestFramework를 사용하여 RESTFULAPI를 구축하십시오. 3. 데이터 분석 및 시각화 : Python을 사용하여 데이터를 처리하고 웹 인터페이스를 통해 표시합니다. 4. 머신 러닝 및 AI : 파이썬은 지능형 웹 애플리케이션을 구축하는 데 사용됩니다. 5. 성능 최적화 : 비동기 프로그래밍, 캐싱 및 코드를 통해 최적화
