Pandas DataFrames를 사용하여 Cartesian Product(CROSS JOIN)를 효율적으로 수행하는 방법은 무엇입니까?
Pandas를 사용한 고성능 데카르트 곱(CROSS JOIN)
데이터 조작 영역에서 데카르트 곱, 즉 CROSS JOIN은 두 개 또는 일대일 또는 다대다 방식으로 더 많은 DataFrame을 생성합니다. 이 작업은 입력 DataFrame의 가능한 모든 요소 조합에 대해 새 행을 생성하여 원본 데이터세트를 확장합니다.
문제 설명
고유 인덱스가 있는 두 개의 DataFrame이 제공됩니다:
left = pd.DataFrame({'col1': ['A', 'B', 'C'], 'col2': [1, 2, 3]}) right = pd.DataFrame({'col1': ['X', 'Y', 'Z'], 'col2': [20, 30, 50]})
목표는 이러한 DataFrame의 데카르트 곱을 계산하는 가장 효율적인 방법을 찾는 것입니다. 결과는 다음과 같습니다. 출력:
col1_x col2_x col1_y col2_y 0 A 1 X 20 1 A 1 Y 30 2 A 1 Z 50 3 B 2 X 20 4 B 2 Y 30 5 B 2 Z 50 6 C 3 X 20 7 C 3 Y 30 8 C 3 Z 50
최적의 솔루션
방법 1: 임시 키 열
한 가지 접근 방식은 "키" 열을 임시로 할당하는 것입니다. 두 DataFrame의 공통 값:
left.assign(key=1).merge(right.assign(key=1), on='key').drop('key', 1)
이 방법은 병합을 사용하여 "키" 열에 다대다 JOIN.
방법 2: NumPy 데카르트 곱
더 큰 DataFrame의 경우 성능이 뛰어난 솔루션은 NumPy의 데카르트 곱을 활용하는 것입니다. 구현:
def cartesian_product(*arrays): la = len(arrays) dtype = np.result_type(*arrays) arr = np.empty([len(a) for a in arrays] + [la], dtype=dtype) for i, a in enumerate(np.ix_(*arrays)): arr[...,i] = a return arr.reshape(-1, la)
이 함수는 가능한 모든 요소 조합을 생성합니다.
방법 3: 일반화된 CROSS JOIN
일반화된 솔루션은 고유하지 않거나 혼합된 인덱스가 있는 DataFrame에서 작동합니다.
def cartesian_product_generalized(left, right): la, lb = len(left), len(right) idx = cartesian_product(np.ogrid[:la], np.ogrid[:lb]) return pd.DataFrame( np.column_stack([left.values[idx[:,0]], right.values[idx[:,1]]]))
이 방법은 DataFrame의 데카르트 곱을 기반으로 DataFrame을 다시 인덱싱합니다. indices.
향상된 솔루션
방법 4: 단순화된 CROSS JOIN
dtype이 혼합되지 않은 두 DataFrame에 대해 더욱 단순화된 솔루션이 가능합니다.
def cartesian_product_simplified(left, right): la, lb = len(left), len(right) ia2, ib2 = np.broadcast_arrays(*np.ogrid[:la,:lb]) return pd.DataFrame( np.column_stack([left.values[ia2.ravel()], right.values[ib2.ravel()]]))
이 방법은 방송과 DataFrames 인덱스의 데카르트 곱을 생성하는 NumPy의 오그리드.
성능 비교
이러한 솔루션의 성능은 데이터 세트 크기와 복잡성에 따라 다릅니다. 다음 벤치마크는 실행 시간의 상대적인 비교를 제공합니다.
# ... (Benchmarking code not included here)
결과는 NumPy 기반 cartesian_product 방법이 대부분의 경우, 특히 DataFrames의 크기가 증가함에 따라 다른 솔루션보다 성능이 우수하다는 것을 나타냅니다.
결론
제시된 기술을 활용하여 데이터 분석가는 데카르트 곱을 효율적으로 수행할 수 있습니다. 데이터 조작 및 확장을 위한 기본 작업인 DataFrames. 이러한 방법을 사용하면 규모가 크거나 복잡한 데이터 세트에서도 최적의 성능을 얻을 수 있어 효율적인 데이터 탐색 및 분석이 가능합니다.
위 내용은 Pandas DataFrames를 사용하여 Cartesian Product(CROSS JOIN)를 효율적으로 수행하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

Pythonlistsarepartoftsandardlardlibrary, whileraysarenot.listsarebuilt-in, 다재다능하고, 수집 할 수있는 반면, arraysarreprovidedByTearRaymoduledlesscommonlyusedDuetolimitedFunctionality.

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

웹 개발에서 Python의 주요 응용 프로그램에는 Django 및 Flask 프레임 워크 사용, API 개발, 데이터 분석 및 시각화, 머신 러닝 및 AI 및 성능 최적화가 포함됩니다. 1. Django 및 Flask 프레임 워크 : Django는 복잡한 응용 분야의 빠른 개발에 적합하며 플라스크는 소형 또는 고도로 맞춤형 프로젝트에 적합합니다. 2. API 개발 : Flask 또는 DjangorestFramework를 사용하여 RESTFULAPI를 구축하십시오. 3. 데이터 분석 및 시각화 : Python을 사용하여 데이터를 처리하고 웹 인터페이스를 통해 표시합니다. 4. 머신 러닝 및 AI : 파이썬은 지능형 웹 애플리케이션을 구축하는 데 사용됩니다. 5. 성능 최적화 : 비동기 프로그래밍, 캐싱 및 코드를 통해 최적화
