백엔드 개발 파이썬 튜토리얼 SQL 마인드를 위한 ChromaDB

SQL 마인드를 위한 ChromaDB

Dec 10, 2024 am 01:02 AM

ChromaDB for the SQL Mind

안녕하세요. Chroma DB는 GenAI 애플리케이션 작업에 유용한 벡터 데이터베이스입니다. 이 기사에서는 MySQL의 유사한 관계를 살펴봄으로써 Chroma DB에서 쿼리를 실행할 수 있는 방법을 살펴보겠습니다.

개요

SQL과 달리 자체 스키마를 정의할 수 없습니다. Chroma에서는 각각 고유한 목적을 가진 고정된 열이 제공됩니다.

import chromadb

#setiing up the client
client = chromadb.Client() 
collection = client.create_collection(name="name")

collection.add(
    documents = ["str1","str2","str3",...]
    ids = [1,2,3,....]
    metadatas=[{"chapter": "3", "verse": "16"},{"chapter":"3", "verse":"5"}, ..]           
    embeddings = [[1,2,3], [3,4,5], [5,6,7]]
)
로그인 후 복사
로그인 후 복사

ID: 고유한 ID입니다. SQL과 달리 자동 증가가 없으므로 직접 제공해야 합니다.
문서: 임베딩을 생성하는 데 사용되는 텍스트 데이터를 삽입하는 데 사용됩니다. 텍스트를 제공하면 자동으로 임베딩이 생성됩니다. 또는 임베딩을 직접 제공하고 다른 곳에 텍스트를 저장할 수도 있습니다.
임베딩: 내 생각에는 유사성 검색을 수행하는 데 사용되는 임베딩이 데이터베이스에서 가장 중요한 부분입니다.
메타데이터: 추가 컨텍스트를 위해 데이터베이스에 추가할 수 있는 추가 데이터를 연결하는 데 사용됩니다.

이제 컬렉션의 기본 사항이 명확해졌으므로 CRUD 작업으로 넘어가서 데이터베이스를 쿼리하는 방법을 살펴보겠습니다.

CRUD 작업

참고: 컬렉션은 Chroma의 테이블과 같습니다

컬렉션을 생성하려면 create_collection()을 사용하고 필요에 따라 작업을 수행할 수 있지만 컬렉션이 이미 만들어져서 이를 다시 참조해야 하는 경우 get_collection()을 사용해야 합니다. 그렇지 않으면 오류가 발생합니다.

Create Table tablename 
로그인 후 복사
로그인 후 복사
#Create a collection
collection = client.create_collection(name="name")

#If a collection is already made and you need to use it again the use
collection = client.get_collection(name="name")
로그인 후 복사
로그인 후 복사
Insert into tablename
Values(... , ..., ...)
로그인 후 복사
로그인 후 복사
collection.add(
    ids = [1]
    documents = ["some text"]
    metadatas = [{"key":"value"}]
    embeddings = [[1,2,3]]
)
로그인 후 복사
로그인 후 복사

삽입된 데이터를 업데이트하거나 데이터를 삭제하려면 다음 명령을 사용할 수 있습니다

collection.update(
    ids = [2]
    documents = ["some text"]
    metadatas = [{"key":"value"}]
    embeddings = [[1,2,3]]            
)

# If the id does not exist update will do nothing. to add data if id does not exist use
collection.upsert(
    ids = [2]
    documents = ["some text"]
    metadatas = [{"key":"value"}]
    embeddings = [[1,2,3]]            
)

# To delete data use delete and refrence the document or id or the feild
collection.delete(
    documents = ["some text"]         
)

# Or you can delete from a bunch of ids using where that will apply filter on metadata
collection.delete(
    ids=["id1", "id2", "id3",...],
    where={"chapter": "20"}
)
로그인 후 복사
로그인 후 복사

쿼리

이제 특정 검색어가 어떻게 나타나는지 살펴보겠습니다

Select * from tablename

Select * from tablename limit value

Select Documents, Metadata from tablename
로그인 후 복사
로그인 후 복사
collection.get()

collection.get(limit = val)

collection.get(include = ["documents","metadata"])
로그인 후 복사

더 고급 쿼리를 위해 대규모 테이블 세트를 가져오는 데 get()이 있지만 쿼리 방법을 사용해야 합니다

Select A,B from table
limit val
로그인 후 복사
collection.query(
    n_results = val #limit
    includes = [A,B] 
)
로그인 후 복사

이제 데이터를 필터링하는 세 가지 가능한 방법이 있습니다: 유사성 검색(주로 사용되는 벡터 데이터베이스), 메타데이터 필터 및 문서 필터

유사성 검색

텍스트나 임베딩을 기반으로 검색하여 가장 유사한 결과를 얻을 수 있습니다

collection.query(query_texts=["string"])

collection.query(query_embeddings=[[1,2,3]])
로그인 후 복사

ChromaDB에서는 쿼리 중 결과를 필터링하는 데 where 및 where_document 매개변수가 사용됩니다. 이 필터를 사용하면 메타데이터 또는 특정 문서 콘텐츠를 기반으로 유사성 검색을 세분화할 수 있습니다.

메타데이터로 필터링

where 매개변수를 사용하면 관련 메타데이터를 기준으로 문서를 필터링할 수 있습니다. 메타데이터는 일반적으로 문서 삽입 중에 제공하는 키-값 쌍의 사전입니다.

카테고리, 작성자, 날짜 등의 메타데이터를 기준으로 문서를 필터링하세요.

import chromadb

#setiing up the client
client = chromadb.Client() 
collection = client.create_collection(name="name")

collection.add(
    documents = ["str1","str2","str3",...]
    ids = [1,2,3,....]
    metadatas=[{"chapter": "3", "verse": "16"},{"chapter":"3", "verse":"5"}, ..]           
    embeddings = [[1,2,3], [3,4,5], [5,6,7]]
)
로그인 후 복사
로그인 후 복사
Create Table tablename 
로그인 후 복사
로그인 후 복사

문서 내용으로 필터링

where_document 매개변수를 사용하면 문서 내용을 기준으로 직접 필터링할 수 있습니다.

특정 키워드가 포함된 문서만 검색합니다.

#Create a collection
collection = client.create_collection(name="name")

#If a collection is already made and you need to use it again the use
collection = client.get_collection(name="name")
로그인 후 복사
로그인 후 복사

주요 사항:

  • $contains, $startsWith 또는 $endsWith와 같은 연산자를 사용하세요.
    • $contains: 하위 문자열이 포함된 문서를 일치시킵니다.
    • $startsWith: 하위 문자열로 시작하는 문서를 일치시킵니다.
    • $endsWith: 하위 문자열로 끝나는 문서를 일치시킵니다.
  • 예:

    Insert into tablename
    Values(... , ..., ...)
    
    로그인 후 복사
    로그인 후 복사

일반적인 사용 사례:

다음과 같이 세 가지 필터를 모두 결합할 수 있습니다.

  1. 특정 카테고리 내에서 검색:

    collection.add(
        ids = [1]
        documents = ["some text"]
        metadatas = [{"key":"value"}]
        embeddings = [[1,2,3]]
    )
    
    로그인 후 복사
    로그인 후 복사
  2. 특정 용어가 포함된 문서 검색:

    collection.update(
        ids = [2]
        documents = ["some text"]
        metadatas = [{"key":"value"}]
        embeddings = [[1,2,3]]            
    )
    
    # If the id does not exist update will do nothing. to add data if id does not exist use
    collection.upsert(
        ids = [2]
        documents = ["some text"]
        metadatas = [{"key":"value"}]
        embeddings = [[1,2,3]]            
    )
    
    # To delete data use delete and refrence the document or id or the feild
    collection.delete(
        documents = ["some text"]         
    )
    
    # Or you can delete from a bunch of ids using where that will apply filter on metadata
    collection.delete(
        ids=["id1", "id2", "id3",...],
        where={"chapter": "20"}
    )
    
    로그인 후 복사
    로그인 후 복사
  3. 메타데이터와 문서 콘텐츠 필터 결합:

    Select * from tablename
    
    Select * from tablename limit value
    
    Select Documents, Metadata from tablename
    
    로그인 후 복사
    로그인 후 복사

이러한 필터는 유사성 검색의 정확성을 향상시켜 ChromaDB를 대상 문서 검색을 위한 강력한 도구로 만듭니다.

결론

나만의 프로그램을 만들려고 할 때 문서가 욕심이 많이 남는다고 느껴서 이 글을 썼습니다. 도움이 되었으면 좋겠습니다!

글을 읽어주셔서 감사합니다. 좋아요와 공유 부탁드립니다. 또한 귀하가 소프트웨어 아키텍처를 처음 접하고 더 많은 것을 알고 싶다면 저는 개인적으로 귀하와 함께 일할 그룹 기반 코호트를 시작하고 소그룹을 통해 소프트웨어 아키텍처 및 디자인 원칙에 대한 모든 것을 가르칠 것입니다. 관심이 있으시면 아래 양식을 작성해 주세요. https://forms.gle/SUAxrzRyvbnV8uCGA

위 내용은 SQL 마인드를 위한 ChromaDB의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

<gum> : Bubble Gum Simulator Infinity- 로얄 키를 얻고 사용하는 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
Nordhold : Fusion System, 설명
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora : 마녀 트리의 속삭임 - Grappling Hook 잠금 해제 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

Python vs. C : 응용 및 사용 사례가 비교되었습니다 Python vs. C : 응용 및 사용 사례가 비교되었습니다 Apr 12, 2025 am 12:01 AM

Python은 데이터 과학, 웹 개발 및 자동화 작업에 적합한 반면 C는 시스템 프로그래밍, 게임 개발 및 임베디드 시스템에 적합합니다. Python은 단순성과 강력한 생태계로 유명하며 C는 고성능 및 기본 제어 기능으로 유명합니다.

파이썬 : 게임, Guis 등 파이썬 : 게임, Guis 등 Apr 13, 2025 am 12:14 AM

Python은 게임 및 GUI 개발에서 탁월합니다. 1) 게임 개발은 Pygame을 사용하여 드로잉, 오디오 및 기타 기능을 제공하며 2D 게임을 만드는 데 적합합니다. 2) GUI 개발은 Tkinter 또는 PYQT를 선택할 수 있습니다. Tkinter는 간단하고 사용하기 쉽고 PYQT는 풍부한 기능을 가지고 있으며 전문 개발에 적합합니다.

Python vs. C : 학습 곡선 및 사용 편의성 Python vs. C : 학습 곡선 및 사용 편의성 Apr 19, 2025 am 12:20 AM

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

파이썬과 시간 : 공부 시간을 최대한 활용 파이썬과 시간 : 공부 시간을 최대한 활용 Apr 14, 2025 am 12:02 AM

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

Python vs. C : 성능과 효율성 탐색 Python vs. C : 성능과 효율성 탐색 Apr 18, 2025 am 12:20 AM

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.

파이썬 : 자동화, 스크립팅 및 작업 관리 파이썬 : 자동화, 스크립팅 및 작업 관리 Apr 16, 2025 am 12:14 AM

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

Python Standard Library의 일부는 무엇입니까? 목록 또는 배열은 무엇입니까? Python Standard Library의 일부는 무엇입니까? 목록 또는 배열은 무엇입니까? Apr 27, 2025 am 12:03 AM

Pythonlistsarepartoftsandardlardlibrary, whileraysarenot.listsarebuilt-in, 다재다능하고, 수집 할 수있는 반면, arraysarreprovidedByTearRaymoduledlesscommonlyusedDuetolimitedFunctionality.

Python 학습 : 2 시간의 일일 연구가 충분합니까? Python 학습 : 2 시간의 일일 연구가 충분합니까? Apr 18, 2025 am 12:22 AM

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

See all articles