C에서 행렬을 효율적으로 전치하는 방법은 무엇입니까?
C에서 행렬을 신속하게 전치하는 방법?
문제:
요소가 배열된 행렬 as:
a b c d e f g h i j k l m n o p q r
목표는 이 행렬을 전치하는 것입니다. 결과는 다음과 같습니다.
a g m b h n c I o d j p e k q f l r
해결책:
행렬을 효율적으로 전치하려면 , 다음 접근 방식을 고려하세요.
1. 순진한 전치:
void transpose(float *src, float *dst, const int N, const int M) { #pragma omp parallel for for(int n = 0; n<N*M; n++) { int i = n/N; int j = n%N; dst[n] = src[M*j + i]; } }
이 간단한 방법은 각 요소를 반복하여 전치된 위치에 복사합니다. 다만, 예측할 수 없는 메모리 접근 패턴으로 인해 캐시 미스가 발생할 수 있습니다.
2. 행렬 곱셈을 위한 전치:
행렬 곱셈 C = A*B를 수행할 때 B를 전치하는 것이 유리할 수 있습니다. 이 접근 방식은 캐시 누락을 제거하고 계산 속도를 크게 향상시킵니다.
transpose(B); for(int i=0; i<N; i++) { for(int j=0; j<K; j++) { float tmp = 0; for(int l=0; l<M; l++) { tmp += A[M*i+l]*B[K*j+l]; } C[K*i + j] = tmp; } } transpose(B);
3. 루프 차단을 사용한 블록 전치:
대형 행렬의 경우 루프 차단은 탁월한 성능을 제공합니다. 행렬을 더 작은 블록으로 나누고 독립적으로 전치합니다.
void transpose_block(float *A, float *B, const int n, const int m, const int lda, const int ldb, const int block_size) { #pragma omp parallel for for(int i=0; i<n; i+=block_size) { for(int j=0; j<m; j+=block_size) { transpose_scalar_block(&A[i*lda +j], &B[j*ldb + i], lda, ldb, block_size); } } }
4. SSE 내장 함수를 사용한 전치:
이 고급 기술은 SSE 내장 함수를 활용하여 비교할 수 없는 속도를 달성합니다. 단일 명령을 사용하여 4x4 블록을 한 번에 효율적으로 전치합니다.
void transpose4x4_SSE(float *A, float *B, const int lda, const int ldb) { __m128 row1 = _mm_load_ps(&A[0*lda]); __m128 row2 = _mm_load_ps(&A[1*lda]); __m128 row3 = _mm_load_ps(&A[2*lda]); __m128 row4 = _mm_load_ps(&A[3*lda]); _MM_TRANSPOSE4_PS(row1, row2, row3, row4); _mm_store_ps(&B[0*ldb], row1); _mm_store_ps(&B[1*ldb], row2); _mm_store_ps(&B[2*ldb], row3); _mm_store_ps(&B[3*ldb], row4); }
5. SSE를 사용한 루프 차단:
루프 차단과 SSE 내장 기능을 결합하면 성능이 더욱 향상됩니다. 이 접근 방식은 행렬의 4x4 블록을 효율적으로 처리합니다.
void transpose_block_SSE4x4(float *A, float *B, const int n, const int m, const int lda, const int ldb ,const int block_size) { #pragma omp parallel for for(int i=0; i<n; i+=block_size) { for(int j=0; j<m; j+=block_size) { int max_i2 = i+block_size < n ? i + block_size : n; int max_j2 = j+block_size < m ? j + block_size : m; for(int i2=i; i2<max_i2; i2+=4) { for(int j2=j; j2<max_j2; j2+=4) { transpose4x4_SSE(&A[i2*lda +j2], &B[j2*ldb + i2], lda, ldb); } } } } }
위 내용은 C에서 행렬을 효율적으로 전치하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

C#과 C의 역사와 진화는 독특하며 미래의 전망도 다릅니다. 1.C는 1983 년 Bjarnestroustrup에 의해 발명되어 객체 지향 프로그래밍을 C 언어에 소개했습니다. Evolution 프로세스에는 자동 키워드 소개 및 Lambda Expressions 소개 C 11, C 20 도입 개념 및 코 루틴과 같은 여러 표준화가 포함되며 향후 성능 및 시스템 수준 프로그래밍에 중점을 둘 것입니다. 2.C#은 2000 년 Microsoft에 의해 출시되었으며 C와 Java의 장점을 결합하여 진화는 단순성과 생산성에 중점을 둡니다. 예를 들어, C#2.0은 제네릭과 C#5.0 도입 된 비동기 프로그래밍을 소개했으며, 이는 향후 개발자의 생산성 및 클라우드 컴퓨팅에 중점을 둘 것입니다.

C# 및 C 및 개발자 경험의 학습 곡선에는 상당한 차이가 있습니다. 1) C#의 학습 곡선은 비교적 평평하며 빠른 개발 및 기업 수준의 응용 프로그램에 적합합니다. 2) C의 학습 곡선은 가파르고 고성능 및 저수준 제어 시나리오에 적합합니다.

C 학습자와 개발자는 StackoverFlow, Reddit의 R/CPP 커뮤니티, Coursera 및 EDX 코스, GitHub의 오픈 소스 프로젝트, 전문 컨설팅 서비스 및 CPPCon에서 리소스와 지원을받을 수 있습니다. 1. StackoverFlow는 기술적 인 질문에 대한 답변을 제공합니다. 2. Reddit의 R/CPP 커뮤니티는 최신 뉴스를 공유합니다. 3. Coursera와 Edx는 공식적인 C 과정을 제공합니다. 4. LLVM 및 부스트 기술 향상과 같은 GitHub의 오픈 소스 프로젝트; 5. JetBrains 및 Perforce와 같은 전문 컨설팅 서비스는 기술 지원을 제공합니다. 6. CPPCON 및 기타 회의는 경력을 돕습니다

C는 XML과 타사 라이브러리 (예 : TinyXML, Pugixml, Xerces-C)와 상호 작용합니다. 1) 라이브러리를 사용하여 XML 파일을 구문 분석하고 C- 처리 가능한 데이터 구조로 변환하십시오. 2) XML을 생성 할 때 C 데이터 구조를 XML 형식으로 변환하십시오. 3) 실제 애플리케이션에서 XML은 종종 구성 파일 및 데이터 교환에 사용되어 개발 효율성을 향상시킵니다.

C는 여전히 현대 프로그래밍과 관련이 있습니다. 1) 고성능 및 직접 하드웨어 작동 기능은 게임 개발, 임베디드 시스템 및 고성능 컴퓨팅 분야에서 첫 번째 선택이됩니다. 2) 스마트 포인터 및 템플릿 프로그래밍과 같은 풍부한 프로그래밍 패러다임 및 현대적인 기능은 유연성과 효율성을 향상시킵니다. 학습 곡선은 가파르지만 강력한 기능은 오늘날의 프로그래밍 생태계에서 여전히 중요합니다.

C의 미래는 병렬 컴퓨팅, 보안, 모듈화 및 AI/기계 학습에 중점을 둘 것입니다. 1) 병렬 컴퓨팅은 코 루틴과 같은 기능을 통해 향상 될 것입니다. 2)보다 엄격한 유형 검사 및 메모리 관리 메커니즘을 통해 보안이 향상 될 것입니다. 3) 변조는 코드 구성 및 편집을 단순화합니다. 4) AI 및 머신 러닝은 C가 수치 컴퓨팅 및 GPU 프로그래밍 지원과 같은 새로운 요구에 적응하도록 촉구합니다.

C에서 Chrono 라이브러리를 사용하면 시간과 시간 간격을보다 정확하게 제어 할 수 있습니다. 이 도서관의 매력을 탐구합시다. C의 크로노 라이브러리는 표준 라이브러리의 일부로 시간과 시간 간격을 다루는 현대적인 방법을 제공합니다. 시간과 C 시간으로 고통받는 프로그래머에게는 Chrono가 의심 할 여지없이 혜택입니다. 코드의 가독성과 유지 가능성을 향상시킬뿐만 아니라 더 높은 정확도와 유연성을 제공합니다. 기본부터 시작합시다. Chrono 라이브러리에는 주로 다음 주요 구성 요소가 포함됩니다. std :: Chrono :: System_Clock : 현재 시간을 얻는 데 사용되는 시스템 클럭을 나타냅니다. STD :: 크론

c is nontdying; it'sevolving.1) c COMINGDUETOITSTIONTIVENICICICICINICE INPERFORMICALEPPLICATION.2) thelugageIscontinuousUllyUpdated, witcentfeatureslikemodulesandCoroutinestoimproveusActionalance.3) despitechallen
