PyTorch의 QMNIST
커피 한잔 사주세요😄
*내 게시물은 QMNIST를 설명합니다.
QMNIST()는 아래와 같이 QMNIST 데이터세트를 사용할 수 있습니다.
*메모:
- 첫 번째 인수는 루트(필수 유형:str 또는 pathlib.Path)입니다. *절대경로, 상대경로 모두 가능합니다.
- 두 번째 인수는 what(Optional-Default:None-Type:str)입니다. *"train"(60,000개 이미지), "test"(60,000개 이미지), "test10k"(10,000개 이미지), "test50k"(50,000개 이미지) 또는 "nist"(402,953개 이미지)를 설정할 수 있습니다.
- 세 번째 인수는 compat(Optional-Default:True-Type:bool)입니다. *True이면 각 이미지의 클래스 번호가 반환되고(MNIST 데이터로더와의 호환성을 위해) False이면 전체 qmnist 정보의 1D 텐서가 반환됩니다.
- 네 번째 인수는 기차 인수(Optional-Default:True-Type:bool)입니다.
*메모:
- None이 아니면 무시됩니다.
- True일 경우 학습 데이터(60,000개 이미지)를 사용하고, False일 경우 테스트 데이터(60,000개 이미지)를 사용합니다.
- Transform 인수(Optional-Default:None-Type:callable)가 있습니다. *transform=을 사용해야 합니다.
- target_transform 인수(Optional-Default:None-Type:callable)가 있습니다. *target_transform=을 반드시 사용해야 합니다.
- 다운로드 인수가 있습니다(Optional-Default:False-Type:bool):
*메모:
- 다운로드= 반드시 사용해야 합니다.
- True인 경우 데이터 세트가 인터넷에서 다운로드되어 루트에 추출(압축 해제)됩니다.
- True이고 데이터세트가 이미 다운로드된 경우 추출됩니다.
- True이고 데이터 세트가 이미 다운로드되어 추출된 경우 아무 일도 일어나지 않습니다.
- 데이터 세트가 이미 다운로드되어 추출된 경우 더 빠르므로 False여야 합니다.
- 여기에서 데이터 세트를 수동으로 다운로드하고 추출할 수 있습니다. 데이터/QMNIST/raw/.
from torchvision.datasets import QMNIST train_data = QMNIST( root="data" ) train_data = QMNIST( root="data", what=None, compat=True, train=True, transform=None, target_transform=None, download=False ) train_data = QMNIST( root="data", what="train", train=False ) test_data1 = QMNIST( root="data", train=False ) test_data1 = QMNIST( root="data", what="test", train=True ) test_data2 = QMNIST( root="data", what="test10k" ) test_data3 = QMNIST( root="data", what="test50k", compat=False ) nist_data = QMNIST( root="data", what="nist" ) l = len l(train_data), l(test_data1), l(test_data2), l(test_data3), l(nist_data) # (60000, 60000, 10000, 50000, 402953) train_data # Dataset QMNIST # Number of datapoints: 60000 # Root location: data # Split: train train_data.root # 'data' train_data.what # 'train' train_data.compat # True train_data.train # True print(train_data.transform) # None print(train_data.target_transform) # None train_data.download # <bound method QMNIST.download of Dataset QMNIST # Number of datapoints: 60000 # Root location: data # Split: train> train_data[0] # (<PIL.Image.Image image mode=L size=28x28>, 5) test_data3[0] # (<PIL.Image.Image image mode=L size=28x28>, # tensor([3, 4, 2424, 51, 33, 261051, 0, 0])) train_data[1] # (<PIL.Image.Image image mode=L size=28x28>, 0) test_data3[1] # (<PIL.Image.Image image mode=L size=28x28>, # tensor([8, 1, 522, 60, 38, 55979, 0, 0])) train_data[2] # (<PIL.Image.Image image mode=L size=28x28>, 4) test_data3[2] # (<PIL.Image.Image image mode=L size=28x28>, # tensor([9, 4, 2496, 115, 39, 269531, 0, 0])) train_data[3] # (<PIL.Image.Image image mode=L size=28x28>, 1) test_data3[3] # (<PIL.Image.Image image mode=L size=28x28>, # tensor([5, 4, 2427, 77, 35, 261428, 0, 0])) train_data[4] # (<PIL.Image.Image image mode=L size=28x28>, 9) test_data3[4] # (<PIL.Image.Image image mode=L size=28x28>, # tensor([7, 4, 2524, 69, 37, 272828, 0, 0])) train_data.classes # ['0 - zero', '1 - one', '2 - two', '3 - three', '4 - four', # '5 - five', '6 - six', '7 - seven', '8 - eight', '9 - nine']
from torchvision.datasets import QMNIST train_data = QMNIST( root="data", what="train" ) test_data1 = QMNIST( root="data", what="test" ) test_data2 = QMNIST( root="data", what="test10k" ) test_data3 = QMNIST( root="data", what="test50k" ) nist_data = QMNIST( root="data", what="nist" ) import matplotlib.pyplot as plt def show_images(data): plt.figure(figsize=(12, 2)) col = 5 for i, (image, label) in enumerate(data, 1): plt.subplot(1, col, i) plt.title(label) plt.imshow(image) if i == col: break plt.show() show_images(data=train_data) show_images(data=test_data1) show_images(data=test_data2) show_images(data=test_data3) show_images(data=nist_data)
위 내용은 PyTorch의 QMNIST의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











Python은 데이터 과학, 웹 개발 및 자동화 작업에 적합한 반면 C는 시스템 프로그래밍, 게임 개발 및 임베디드 시스템에 적합합니다. Python은 단순성과 강력한 생태계로 유명하며 C는 고성능 및 기본 제어 기능으로 유명합니다.

2 시간 이내에 파이썬의 기본 사항을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우십시오. 이를 통해 간단한 파이썬 프로그램 작성을 시작하는 데 도움이됩니다.

Python은 게임 및 GUI 개발에서 탁월합니다. 1) 게임 개발은 Pygame을 사용하여 드로잉, 오디오 및 기타 기능을 제공하며 2D 게임을 만드는 데 적합합니다. 2) GUI 개발은 Tkinter 또는 PYQT를 선택할 수 있습니다. Tkinter는 간단하고 사용하기 쉽고 PYQT는 풍부한 기능을 가지고 있으며 전문 개발에 적합합니다.

2 시간 이내에 Python의 기본 프로그래밍 개념과 기술을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우기, 2. 마스터 제어 흐름 (조건부 명세서 및 루프), 3. 기능의 정의 및 사용을 이해하십시오. 4. 간단한 예제 및 코드 스 니펫을 통해 Python 프로그래밍을 신속하게 시작하십시오.

Python은 웹 개발, 데이터 과학, 기계 학습, 자동화 및 스크립팅 분야에서 널리 사용됩니다. 1) 웹 개발에서 Django 및 Flask 프레임 워크는 개발 프로세스를 단순화합니다. 2) 데이터 과학 및 기계 학습 분야에서 Numpy, Pandas, Scikit-Learn 및 Tensorflow 라이브러리는 강력한 지원을 제공합니다. 3) 자동화 및 스크립팅 측면에서 Python은 자동화 된 테스트 및 시스템 관리와 같은 작업에 적합합니다.

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.
