특히 매우 큰 수(예: 12000비트 이상)의 경우 더 빠른 계산을 위해 NTT(수론 변환) 및 모듈러 산술을 최적화하려면 어떻게 해야 합니까?
모듈식 연산 및 NTT(유한장 DFT) 최적화
문제 설명
NTT를 빠르게 사용하고 싶었습니다. 제곱(빠른 빅넘 제곱 계산 참조). 그러나 결과는 매우 큰 숫자의 경우에도 느립니다. .. 12000비트 이상.
제 질문은 다음과 같습니다.
- 있나요? NTT 변환을 최적화하는 방법이 있나요? 나는 병렬성(스레드)으로 속도를 높이려는 것이 아닙니다. 이것은 낮은 수준의 레이어에만 적용됩니다.
- 모듈 연산 속도를 높일 수 있는 방법이 있나요?
이것은 NTT용 C 소스 코드입니다(완전하고 타사 라이브러리가 필요 없이 100% C에서 작동하며 스레드로부터 안전해야 합니다. 소스 배열이 임시로 사용된다는 점에 유의하세요!!! 또한 배열을 자체적으로 변환할 수도 없습니다.
p>
최적화된 솔루션
- 사전 계산 사용 거듭제곱: NTT 프로세스 중에 W와 iW의 거듭제곱(기본 단위근과 그 역수)을 미리 계산하고 저장하여 재계산을 방지합니다. 이렇게 하면 곱셈과 나눗셈 횟수가 크게 줄어들어 계산 속도가 빨라집니다.
- 루프 언롤링: NTT 알고리즘에서 루프를 언롤링하여 루프 반복과 관련된 오버헤드를 줄입니다. 이렇게 하면 분기 명령 수를 줄여 성능을 향상할 수 있습니다.
- 모듈식 산술 최적화: 비트 연산 및 어셈블리 언어를 사용하여 모듈식 산술 연산(덧셈, 뺄셈, 곱셈 및 누승)을 효율적으로 구현합니다. . 이렇게 하면 불필요한 분기 및 조건문을 제거하여 더 빠르게 실행할 수 있습니다.
구현 예
다음은 미리 계산된 거듭제곱과 비트 연산을 사용하여 C에서 최적화된 NTT 구현의 예입니다.
class NTT { public: NTT() { // Initialize constants p = 0xc0000001; W = modpow(2, 0x30000000 / n); iW = modpow(2, p - 1 - 0x30000000 / n); rN = modpow(n, p - 2); NN = n >> 1; // Precompute W and iW powers WW = new uint32_t[n]; iWW = new uint32_t[n]; WW[0] = 1; iWW[0] = 1; for (uint32_t i = 1; i < n; i++) { WW[i] = modmul(WW[i - 1], W); iWW[i] = modmul(iWW[i - 1], iW); } } void NTT(uint32_t *dst, uint32_t *src, uint32_t n) { if (n > 0) { // Reorder even, odd elements for (uint32_t i = 0, j = 0; i < NN; i++, j += 2) { dst[i] = src[j]; } for (j = 1; i < n; i++, j += 2) { dst[i] = src[j]; } // Recursive NTT NTT(src, dst, NN); // Even NTT(src + NN, dst + NN, NN); // Odd // Restore results for (uint32_t i = 0, j = NN; i < NN; i++, j++) { uint32_t a0 = src[i]; uint32_t a1 = modmul(src[j], WW[i]); dst[i] = modadd(a0, a1); dst[j] = modsub(a0, a1); } } } private: uint32_t p, n, NN, W, iW, rN; uint32_t *WW, *iWW; // Modular arithmetic operations inline uint32_t modadd(uint32_t a, uint32_t b) { uint32_t d = a + b; if (d >= p) d -= p; return d; } inline uint32_t modsub(uint32_t a, uint32_t b) { uint32_t d = a - b; if (d > a) d += p; return d; } inline uint32_t modmul(uint32_t a, uint32_t b) { uint32_t m = (uint64_t)a * b; return m - (p * (m / p)); } inline uint32_t modpow(uint32_t a, uint32_t b) { if (b == 0) return 1; uint32_t t = modpow(a, b / 2); t = modmul(t, t); if (b & 1) t = modmul(t, a); return t; } };
추가팁
- 사용하기 C와 같은 비트 연산 및 인라인 어셈블리를 지원하는 고급 언어.
- 프로파일러를 사용하여 코드의 병목 현상을 식별하고 이를 최적화 대상으로 지정합니다.
- NTT 알고리즘 병렬화를 고려하세요. 다중 스레드 또는 SIMD 명령어를 사용합니다.
위 내용은 특히 매우 큰 수(예: 12000비트 이상)의 경우 더 빠른 계산을 위해 NTT(수론 변환) 및 모듈러 산술을 최적화하려면 어떻게 해야 합니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

C#과 C의 역사와 진화는 독특하며 미래의 전망도 다릅니다. 1.C는 1983 년 Bjarnestroustrup에 의해 발명되어 객체 지향 프로그래밍을 C 언어에 소개했습니다. Evolution 프로세스에는 자동 키워드 소개 및 Lambda Expressions 소개 C 11, C 20 도입 개념 및 코 루틴과 같은 여러 표준화가 포함되며 향후 성능 및 시스템 수준 프로그래밍에 중점을 둘 것입니다. 2.C#은 2000 년 Microsoft에 의해 출시되었으며 C와 Java의 장점을 결합하여 진화는 단순성과 생산성에 중점을 둡니다. 예를 들어, C#2.0은 제네릭과 C#5.0 도입 된 비동기 프로그래밍을 소개했으며, 이는 향후 개발자의 생산성 및 클라우드 컴퓨팅에 중점을 둘 것입니다.

C# 및 C 및 개발자 경험의 학습 곡선에는 상당한 차이가 있습니다. 1) C#의 학습 곡선은 비교적 평평하며 빠른 개발 및 기업 수준의 응용 프로그램에 적합합니다. 2) C의 학습 곡선은 가파르고 고성능 및 저수준 제어 시나리오에 적합합니다.

C에서 정적 분석의 적용에는 주로 메모리 관리 문제 발견, 코드 로직 오류 확인 및 코드 보안 개선이 포함됩니다. 1) 정적 분석은 메모리 누출, 이중 릴리스 및 초기화되지 않은 포인터와 같은 문제를 식별 할 수 있습니다. 2) 사용하지 않은 변수, 데드 코드 및 논리적 모순을 감지 할 수 있습니다. 3) Coverity와 같은 정적 분석 도구는 버퍼 오버플로, 정수 오버플로 및 안전하지 않은 API 호출을 감지하여 코드 보안을 개선 할 수 있습니다.

C는 XML과 타사 라이브러리 (예 : TinyXML, Pugixml, Xerces-C)와 상호 작용합니다. 1) 라이브러리를 사용하여 XML 파일을 구문 분석하고 C- 처리 가능한 데이터 구조로 변환하십시오. 2) XML을 생성 할 때 C 데이터 구조를 XML 형식으로 변환하십시오. 3) 실제 애플리케이션에서 XML은 종종 구성 파일 및 데이터 교환에 사용되어 개발 효율성을 향상시킵니다.

C에서 Chrono 라이브러리를 사용하면 시간과 시간 간격을보다 정확하게 제어 할 수 있습니다. 이 도서관의 매력을 탐구합시다. C의 크로노 라이브러리는 표준 라이브러리의 일부로 시간과 시간 간격을 다루는 현대적인 방법을 제공합니다. 시간과 C 시간으로 고통받는 프로그래머에게는 Chrono가 의심 할 여지없이 혜택입니다. 코드의 가독성과 유지 가능성을 향상시킬뿐만 아니라 더 높은 정확도와 유연성을 제공합니다. 기본부터 시작합시다. Chrono 라이브러리에는 주로 다음 주요 구성 요소가 포함됩니다. std :: Chrono :: System_Clock : 현재 시간을 얻는 데 사용되는 시스템 클럭을 나타냅니다. STD :: 크론

C의 미래는 병렬 컴퓨팅, 보안, 모듈화 및 AI/기계 학습에 중점을 둘 것입니다. 1) 병렬 컴퓨팅은 코 루틴과 같은 기능을 통해 향상 될 것입니다. 2)보다 엄격한 유형 검사 및 메모리 관리 메커니즘을 통해 보안이 향상 될 것입니다. 3) 변조는 코드 구성 및 편집을 단순화합니다. 4) AI 및 머신 러닝은 C가 수치 컴퓨팅 및 GPU 프로그래밍 지원과 같은 새로운 요구에 적응하도록 촉구합니다.

c is nontdying; it'sevolving.1) c COMINGDUETOITSTIONTIVENICICICICINICE INPERFORMICALEPPLICATION.2) thelugageIscontinuousUllyUpdated, witcentfeatureslikemodulesandCoroutinestoimproveusActionalance.3) despitechallen

C#은 자동 쓰레기 수집 메커니즘을 사용하는 반면 C는 수동 메모리 관리를 사용합니다. 1. C#의 쓰레기 수집기는 메모리 누출 위험을 줄이기 위해 메모리를 자동으로 관리하지만 성능 저하로 이어질 수 있습니다. 2.C는 유연한 메모리 제어를 제공하며, 미세 관리가 필요한 애플리케이션에 적합하지만 메모리 누출을 피하기 위해주의해서 처리해야합니다.
