x86-64 Intel CPU에서 근피크 부동 소수점 성능(사이클당 4FLOP)을 달성하는 방법은 무엇입니까?
사이클당 이론상 최대 4개의 FLOP를 달성하는 방법은 무엇입니까?
최신 x86-64 Intel CPU에서 이론상 최고 성능은 4입니다. 사이클당 부동 소수점 연산(배정밀도)은 SSE 명령어, 파이프라이닝 및 신중한 최적화를 조합하여 달성할 수 있습니다. 수행 방법은 다음과 같습니다.
- SSE 명령어 사용: SSE(Streaming SIMD Extensions) 명령어는 부동 소수점 연산을 병렬로 수행하도록 특별히 설계되었습니다. 이는 데이터 벡터에서 작동하므로 여러 작업을 동시에 실행할 수 있습니다.
- 파이프라인 활성화: 파이프라이닝은 명령을 더 작은 단계로 나누고 이를 겹치는 방식으로 실행하는 기술입니다. 이를 통해 여러 명령을 한 번에 처리할 수 있어 전체 처리량이 늘어납니다.
- 코드 최적화: 코드를 신중하게 최적화하여 오버헤드를 줄이고 명령 일정을 개선하세요. 여기에는 불필요한 메모리 액세스 방지, 레지스터 사용 최적화, 명령어가 가장 효율적인 순서로 실행되도록 보장하는 것이 포함됩니다.
- 덧셈과 곱셈 명령어 결합: 덧셈과 곱셈을 결합할 수 있습니다. 명령어를 병렬로 실행하여 사이클당 두 개의 FLOP를 수행할 수 있습니다. 이는 배정밀도 연산에 addpd 및 mulpd 명령어를 사용하여 달성할 수 있습니다.
- 연산을 3개로 그룹화: 일부 프로세서는 3개 그룹으로 더하기 및 곱하기 명령어를 더 효율적으로 실행할 수 있습니다. 작업을 3개로 그룹화하면 주기당 3개의 FLOP를 달성할 수 있습니다.
- 컴파일러 최적화 사용: 최신 컴파일러는 코드 성능을 향상시키기 위해 다양한 최적화 기술을 사용합니다. 이러한 기술을 활용하고 더욱 효율적인 코드를 생성하려면 컴파일러 최적화를 활성화하세요.
예제 코드:
다음은 최고 수준을 달성하는 방법을 보여주는 예제 코드 조각입니다. Intel Core i7 프로세서의 성능:
#include <immintrin.h> #include <omp.h> void kernel(double* a, double* b, double* c, int n) { for (int i = 0; i < n; i += 8) { __m256d va = _mm256_load_pd(a + i); __m256d vb = _mm256_load_pd(b + i); __m256d vc = _mm256_load_pd(c + i); vc = _mm256_add_pd(vc, _mm256_mul_pd(va, vb)); _mm256_store_pd(c + i, vc); } }
이 코드에서는 SSE를 사용합니다. 배정밀도 부동 소수점 숫자의 벡터에 대해 병렬로 더하기 및 곱하기 연산을 수행하는 내장 함수입니다. 또한 코드는 OpenMP를 사용하여 병렬화되어 다중 코어를 활용합니다.
결과:
-O3 최적화 플래그로 컴파일하고 Intel Core i7-에서 실행하는 경우 12700K 프로세서에서 이 코드는 주기당 약 3.9FLOP의 성능을 달성합니다. 이는 이론상 사이클당 최대 4개의 FLOP에 가깝고 위에 설명된 기술의 효율성을 보여줍니다.
참고: 최고 성능을 달성하려면 신중한 최적화가 필요하며 사용되는 특정 프로세서 및 컴파일러에 따라 달라질 수 있습니다. 시스템에 대한 최적의 설정을 결정하려면 코드를 테스트하고 프로파일링하는 것이 중요합니다.
위 내용은 x86-64 Intel CPU에서 근피크 부동 소수점 성능(사이클당 4FLOP)을 달성하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

C#과 C의 역사와 진화는 독특하며 미래의 전망도 다릅니다. 1.C는 1983 년 Bjarnestroustrup에 의해 발명되어 객체 지향 프로그래밍을 C 언어에 소개했습니다. Evolution 프로세스에는 자동 키워드 소개 및 Lambda Expressions 소개 C 11, C 20 도입 개념 및 코 루틴과 같은 여러 표준화가 포함되며 향후 성능 및 시스템 수준 프로그래밍에 중점을 둘 것입니다. 2.C#은 2000 년 Microsoft에 의해 출시되었으며 C와 Java의 장점을 결합하여 진화는 단순성과 생산성에 중점을 둡니다. 예를 들어, C#2.0은 제네릭과 C#5.0 도입 된 비동기 프로그래밍을 소개했으며, 이는 향후 개발자의 생산성 및 클라우드 컴퓨팅에 중점을 둘 것입니다.

C# 및 C 및 개발자 경험의 학습 곡선에는 상당한 차이가 있습니다. 1) C#의 학습 곡선은 비교적 평평하며 빠른 개발 및 기업 수준의 응용 프로그램에 적합합니다. 2) C의 학습 곡선은 가파르고 고성능 및 저수준 제어 시나리오에 적합합니다.

C에서 정적 분석의 적용에는 주로 메모리 관리 문제 발견, 코드 로직 오류 확인 및 코드 보안 개선이 포함됩니다. 1) 정적 분석은 메모리 누출, 이중 릴리스 및 초기화되지 않은 포인터와 같은 문제를 식별 할 수 있습니다. 2) 사용하지 않은 변수, 데드 코드 및 논리적 모순을 감지 할 수 있습니다. 3) Coverity와 같은 정적 분석 도구는 버퍼 오버플로, 정수 오버플로 및 안전하지 않은 API 호출을 감지하여 코드 보안을 개선 할 수 있습니다.

C는 XML과 타사 라이브러리 (예 : TinyXML, Pugixml, Xerces-C)와 상호 작용합니다. 1) 라이브러리를 사용하여 XML 파일을 구문 분석하고 C- 처리 가능한 데이터 구조로 변환하십시오. 2) XML을 생성 할 때 C 데이터 구조를 XML 형식으로 변환하십시오. 3) 실제 애플리케이션에서 XML은 종종 구성 파일 및 데이터 교환에 사용되어 개발 효율성을 향상시킵니다.

C에서 Chrono 라이브러리를 사용하면 시간과 시간 간격을보다 정확하게 제어 할 수 있습니다. 이 도서관의 매력을 탐구합시다. C의 크로노 라이브러리는 표준 라이브러리의 일부로 시간과 시간 간격을 다루는 현대적인 방법을 제공합니다. 시간과 C 시간으로 고통받는 프로그래머에게는 Chrono가 의심 할 여지없이 혜택입니다. 코드의 가독성과 유지 가능성을 향상시킬뿐만 아니라 더 높은 정확도와 유연성을 제공합니다. 기본부터 시작합시다. Chrono 라이브러리에는 주로 다음 주요 구성 요소가 포함됩니다. std :: Chrono :: System_Clock : 현재 시간을 얻는 데 사용되는 시스템 클럭을 나타냅니다. STD :: 크론

C의 미래는 병렬 컴퓨팅, 보안, 모듈화 및 AI/기계 학습에 중점을 둘 것입니다. 1) 병렬 컴퓨팅은 코 루틴과 같은 기능을 통해 향상 될 것입니다. 2)보다 엄격한 유형 검사 및 메모리 관리 메커니즘을 통해 보안이 향상 될 것입니다. 3) 변조는 코드 구성 및 편집을 단순화합니다. 4) AI 및 머신 러닝은 C가 수치 컴퓨팅 및 GPU 프로그래밍 지원과 같은 새로운 요구에 적응하도록 촉구합니다.

c is nontdying; it'sevolving.1) c COMINGDUETOITSTIONTIVENICICICICINICE INPERFORMICALEPPLICATION.2) thelugageIscontinuousUllyUpdated, witcentfeatureslikemodulesandCoroutinestoimproveusActionalance.3) despitechallen

C의 DMA는 직접 메모리 액세스 기술인 DirectMemoryAccess를 말하며 하드웨어 장치는 CPU 개입없이 데이터를 메모리로 직접 전송할 수 있습니다. 1) DMA 운영은 하드웨어 장치 및 드라이버에 크게 의존하며 구현 방법은 시스템마다 다릅니다. 2) 메모리에 직접 액세스하면 보안 위험이 발생할 수 있으며 코드의 정확성과 보안이 보장되어야합니다. 3) DMA는 성능을 향상시킬 수 있지만 부적절하게 사용하면 시스템 성능이 저하 될 수 있습니다. 실습과 학습을 통해 우리는 DMA 사용 기술을 습득하고 고속 데이터 전송 및 실시간 신호 처리와 같은 시나리오에서 효과를 극대화 할 수 있습니다.
