Pandas의 `apply()` 함수 사용을 언제 피해야 합니까?
Pandas 코드에서 apply()를 사용하지 말아야 할 경우
이 포괄적인 분석에서는 Pandas 코드에서 apply() 함수를 사용할 때의 장단점을 살펴봅니다. p>
apply() 이해하기 Function
apply()는 DataFrame의 각 행이나 열에 사용자 정의 함수를 적용할 수 있는 편리한 함수입니다. 그러나 여기에는 제한 사항과 잠재적인 성능 문제가 있습니다.
피해야 할 이유 apply()
- 성능 문제: apply()는 사용자 정의 함수를 반복적으로 적용하여 심각한 성능 병목 현상을 일으킵니다. 벡터화된 대안이나 목록 이해가 일반적으로 더 빠릅니다.
- 중복 행 또는 열 실행: 어떤 경우에는 apply()가 사용자 정의 함수를 두 번, 한 번 실행하여 부작용을 확인하고 한 번 기능을 적용해 보세요.
- 간단한 작업의 비효율성: sum() 및 max()와 같은 많은 내장 Pandas 함수는 apply()보다 작업을 훨씬 빠르게 수행합니다. 간단한 작업용입니다.
사용을 고려해야 하는 경우 apply()
apply()는 일반적으로 피해야 하지만, 허용 가능한 옵션이 될 수 있는 특정 상황이 있습니다:
- DataFrame이 아닌 시리즈에 대해 벡터화된 함수: 함수가 시리즈에 대해 벡터화되지만 그렇지 않은 경우 DataFrames, apply()를 사용하여 여러 열에 함수를 적용할 수 있습니다.
- 결합된 GroupBy 작업: 단일 GroupBy 작업에서 여러 변환을 결합하려면 적용( )는 GroupBy 개체에서 사용할 수 있습니다.
- 시리즈를 다음으로 변환 문자열: 놀랍게도 시리즈의 정수를 215 미만의 데이터 크기에 대한 문자열로 변환할 때 apply()가 astype()보다 더 빠를 수 있습니다.
코드 팁 리팩토링
apply() 사용을 줄이고 코드 성능을 향상하려면 다음 기술을 고려하세요.
- 벡터화 작업: Pandas 또는 numpy에서 사용할 수 있는 벡터화 함수를 어디서나 사용하세요. 가능합니다.
- List Comprehensions 활용: 스칼라 연산의 경우 List Comprehension은 apply()보다 더 빠른 대안을 제공합니다.
- Pandas 내장 기능 활용: sum() 및 max()와 같은 일반적인 작업에 최적화된 Pandas 함수를 활용합니다.
- 사용자 정의 람다를 드물게 사용: Apply()에서 사용자 정의 람다를 사용하는 경우 이중을 피하기 위해 이해력이나 벡터화된 함수를 나열하는 인수로 사용합니다. 실행.
이러한 기술을 적용하면 코드 실행 속도가 훨씬 빨라지고 전반적인 성능이 향상됩니다.
결론< ;/h2>
apply()는 편리한 기능일 수 있지만 주의해서 사용해야 합니다. 효율적이고 확장 가능한 Pandas 코드를 작성하려면 Apply()의 제한 사항과 성능에 미치는 영향을 이해하는 것이 중요합니다.
위 내용은 Pandas의 `apply()` 함수 사용을 언제 피해야 합니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

Python은 데이터 과학, 웹 개발 및 자동화 작업에 적합한 반면 C는 시스템 프로그래밍, 게임 개발 및 임베디드 시스템에 적합합니다. Python은 단순성과 강력한 생태계로 유명하며 C는 고성능 및 기본 제어 기능으로 유명합니다.

2 시간 이내에 Python의 기본 프로그래밍 개념과 기술을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우기, 2. 마스터 제어 흐름 (조건부 명세서 및 루프), 3. 기능의 정의 및 사용을 이해하십시오. 4. 간단한 예제 및 코드 스 니펫을 통해 Python 프로그래밍을 신속하게 시작하십시오.

Python은 게임 및 GUI 개발에서 탁월합니다. 1) 게임 개발은 Pygame을 사용하여 드로잉, 오디오 및 기타 기능을 제공하며 2D 게임을 만드는 데 적합합니다. 2) GUI 개발은 Tkinter 또는 PYQT를 선택할 수 있습니다. Tkinter는 간단하고 사용하기 쉽고 PYQT는 풍부한 기능을 가지고 있으며 전문 개발에 적합합니다.

2 시간 이내에 파이썬의 기본 사항을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우십시오. 이를 통해 간단한 파이썬 프로그램 작성을 시작하는 데 도움이됩니다.

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

Python은 웹 개발, 데이터 과학, 기계 학습, 자동화 및 스크립팅 분야에서 널리 사용됩니다. 1) 웹 개발에서 Django 및 Flask 프레임 워크는 개발 프로세스를 단순화합니다. 2) 데이터 과학 및 기계 학습 분야에서 Numpy, Pandas, Scikit-Learn 및 Tensorflow 라이브러리는 강력한 지원을 제공합니다. 3) 자동화 및 스크립팅 측면에서 Python은 자동화 된 테스트 및 시스템 관리와 같은 작업에 적합합니다.

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.
