백엔드 개발 파이썬 튜토리얼 ClientAI 및 Ollama를 사용하여 로컬 AI 작업 플래너 구축

ClientAI 및 Ollama를 사용하여 로컬 AI 작업 플래너 구축

Dec 18, 2024 am 01:33 AM

Building a Local AI Task Planner with ClientAI and Ollama

이 튜토리얼에서는 ClientAI와 Ollama를 사용하여 AI 기반 작업 플래너를 구축해 보겠습니다. 우리의 플래너는 목표를 실행 가능한 작업으로 분류하고, 현실적인 일정을 만들고, 리소스를 관리합니다. 이 모든 작업이 사용자의 컴퓨터에서 실행됩니다.

우리 작업 계획자는 다음을 수행할 수 있습니다.

  • 목표를 구체적이고 실행 가능한 작업으로 세분화
  • 오류 처리를 통해 현실적인 타임라인 만들기
  • 자원의 효과적인 관리 및 배분
  • 체계적이고 형식화된 계획 제공

ClientAI 문서는 여기를, Github Repo는 여기를 참조하세요.

환경 설정

먼저 프로젝트에 대한 새 디렉터리를 만듭니다.

mkdir local_task_planner
cd local_task_planner
로그인 후 복사

Ollama 지원을 통해 ClientAI 설치:

pip install clientai[ollama]
로그인 후 복사

시스템에 Ollama가 설치되어 있는지 확인하세요. 올라마 홈페이지에서 받으실 수 있습니다.

기본 Python 파일 만들기:

touch task_planner.py
로그인 후 복사

핵심 가져오기부터 시작해 보겠습니다.

from datetime import datetime, timedelta
from typing import Dict, List
import logging

from clientai import ClientAI
from clientai.agent import create_agent, tool
from clientai.ollama import OllamaManager

logger = logging.getLogger(__name__)
로그인 후 복사

각 구성 요소가 중요한 역할을 합니다.

  • datetime: 작업 일정 및 일정을 관리하는 데 도움이 됩니다
  • ClientAI: AI 프레임워크 제공
  • OllamaManager: 로컬 AI 모델을 관리합니다
  • 유형 힌트 및 로깅을 위한 다양한 유틸리티 모듈

Task Planner 핵심 구축

먼저 AI 상호작용을 관리할 TaskPlanner 클래스를 만들어 보겠습니다.

class TaskPlanner:
    """A local task planning system using Ollama."""

    def __init__(self):
        """Initialize the task planner with Ollama."""
        self.manager = OllamaManager()
        self.client = None
        self.planner = None

    def start(self):
        """Start the Ollama server and initialize the client."""
        self.manager.start()
        self.client = ClientAI("ollama", host="http://localhost:11434")

        self.planner = create_agent(
            client=self.client,
            role="task planner",
            system_prompt="""You are a practical task planner. Break down goals into
            specific, actionable tasks with realistic time estimates and resource needs.
            Use the tools provided to validate timelines and format plans properly.""",
            model="llama3",
            step="think",
            tools=[validate_timeline, format_plan],
            tool_confidence=0.8,
            stream=True,
        )
로그인 후 복사

이 수업은 우리의 기초가 됩니다. Ollama 서버 라이프사이클을 관리하고 AI 클라이언트를 생성 및 구성하며 특정 기능을 갖춘 계획 에이전트를 설정합니다.

계획 도구 만들기

이제 AI가 사용할 도구를 만들어 보겠습니다. 먼저, 타임라인 검사기:

@tool(name="validate_timeline")
def validate_timeline(tasks: Dict[str, int]) -> Dict[str, dict]:
    """
    Validate time estimates and create a realistic timeline.

    Args:
        tasks: Dictionary of task names and estimated hours

    Returns:
        Dictionary with start dates and deadlines
    """
    try:
        current_date = datetime.now()
        timeline = {}
        accumulated_hours = 0

        for task, hours in tasks.items():
            try:
                hours_int = int(float(str(hours)))

                if hours_int <= 0:
                    logger.warning(f"Skipping task {task}: Invalid hours value {hours}")
                    continue

                days_needed = hours_int / 6
                start_date = current_date + timedelta(hours=accumulated_hours)
                end_date = start_date + timedelta(days=days_needed)

                timeline[task] = {
                    "start": start_date.strftime("%Y-%m-%d"),
                    "end": end_date.strftime("%Y-%m-%d"),
                    "hours": hours_int,
                }

                accumulated_hours += hours_int

            except (ValueError, TypeError) as e:
                logger.warning(f"Skipping task {task}: Invalid hours value {hours} - {e}")
                continue

        return timeline
    except Exception as e:
        logger.error(f"Error validating timeline: {str(e)}")
        return {}
로그인 후 복사

이 유효성 검사기는 예상 시간을 근무일로 변환하고, 유효하지 않은 입력을 적절하게 처리하고, 현실적인 순차적 일정을 생성하고, 디버깅을 위한 자세한 로깅을 제공합니다.

다음으로 계획 포맷터를 만들어 보겠습니다.

@tool(name="format_plan")
def format_plan(
    tasks: List[str],
    timeline: Dict[str, dict],
    resources: List[str]
) -> str:
    """
    Format the plan in a clear, structured way.

    Args:
        tasks: List of tasks
        timeline: Timeline from validate_timeline
        resources: List of required resources

    Returns:
        Formatted plan as a string
    """
    try:
        plan = "== Project Plan ==\n\n"

        plan += "Tasks and Timeline:\n"
        for i, task in enumerate(tasks, 1):
            if task in timeline:
                t = timeline[task]
                plan += f"\n{i}. {task}\n"
                plan += f"   Start: {t['start']}\n"
                plan += f"   End: {t['end']}\n"
                plan += f"   Estimated Hours: {t['hours']}\n"

        plan += "\nRequired Resources:\n"
        for resource in resources:
            plan += f"- {resource}\n"

        return plan
    except Exception as e:
        logger.error(f"Error formatting plan: {str(e)}")
        return "Error: Unable to format plan"
로그인 후 복사

여기서는 작업 번호를 적절하게 매기고 타임라인을 정리하여 일관되고 읽기 쉬운 출력을 만들고 싶습니다.

인터페이스 구축

플래너를 위한 사용자 친화적인 인터페이스를 만들어 보겠습니다.

def get_plan(self, goal: str) -> str:
    """
    Generate a plan for the given goal.

    Args:
        goal: The goal to plan for

    Returns:
        A formatted plan string
    """
    if not self.planner:
        raise RuntimeError("Planner not initialized. Call start() first.")

    return self.planner.run(goal)

def main():
    planner = TaskPlanner()

    try:
        print("Task Planner (Local AI)")
        print("Enter your goal, and I'll create a practical, timeline-based plan.")
        print("Type 'quit' to exit.")

        planner.start()

        while True:
            print("\n" + "=" * 50 + "\n")
            goal = input("Enter your goal: ")

            if goal.lower() == "quit":
                break

            try:
                plan = planner.get_plan(goal)
                print("\nYour Plan:\n")
                for chunk in plan:
                    print(chunk, end="", flush=True)
            except Exception as e:
                print(f"Error: {str(e)}")

    finally:
        planner.stop()

if __name__ == "__main__":
    main()
로그인 후 복사

저희 인터페이스는 다음을 제공합니다.

  • 사용자 지침 지우기
  • 스트리밍을 통한 실시간 계획 생성
  • 올바른 오류 처리
  • 깨끗한 셧다운 관리

사용 예

플래너를 실행하면 다음과 같은 내용이 표시됩니다.

Task Planner (Local AI)
Enter your goal, and I'll create a practical, timeline-based plan.
Type 'quit' to exit.

==================================================

Enter your goal: Create a personal portfolio website

Your Plan:

== Project Plan ==

Tasks and Timeline:
1. Requirements Analysis and Planning
   Start: 2024-12-08
   End: 2024-12-09
   Estimated Hours: 6

2. Design and Wireframing
   Start: 2024-12-09
   End: 2024-12-11
   Estimated Hours: 12

3. Content Creation
   Start: 2024-12-11
   End: 2024-12-12
   Estimated Hours: 8

4. Development
   Start: 2024-12-12
   End: 2024-12-15
   Estimated Hours: 20

Required Resources:
- Design software (e.g., Figma)
- Text editor or IDE
- Web hosting service
- Version control system
로그인 후 복사

향후 개선 사항

작업 계획을 위해 다음 개선 사항을 고려하세요.

  • 작업 간 종속성 추적 추가
  • 리소스 비용 계산 포함
  • 계획을 파일이나 프로젝트 관리 도구에 저장
  • 원래 계획 대비 진행 상황 추적
  • 리소스 가용성 확인 추가
  • 병렬 작업 스케줄링 구현
  • 반복 작업 지원 추가
  • 작업 우선순위 수준 포함

ClientAI에 대해 자세히 알아보려면 문서로 이동하세요.

나와 연결하세요

이 튜토리얼에 대해 질문이 있거나 작업 플래너의 개선 사항을 공유하고 싶다면 언제든지 문의하세요.

  • GitHub: igorbenav
  • X/트위터: @igorbenav
  • 링크드인: Igor

위 내용은 ClientAI 및 Ollama를 사용하여 로컬 AI 작업 플래너 구축의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

<gum> : Bubble Gum Simulator Infinity- 로얄 키를 얻고 사용하는 방법
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
Nordhold : Fusion System, 설명
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora : 마녀 트리의 속삭임 - Grappling Hook 잠금 해제 방법
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
<exp exp> 모호한 : 원정 33- 완벽한 크로마 촉매를 얻는 방법
2 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

Python vs. C : 학습 곡선 및 사용 편의성 Python vs. C : 학습 곡선 및 사용 편의성 Apr 19, 2025 am 12:20 AM

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

Python 학습 : 2 시간의 일일 연구가 충분합니까? Python 학습 : 2 시간의 일일 연구가 충분합니까? Apr 18, 2025 am 12:22 AM

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

Python vs. C : 성능과 효율성 탐색 Python vs. C : 성능과 효율성 탐색 Apr 18, 2025 am 12:20 AM

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.

Python vs. C : 주요 차이점 이해 Python vs. C : 주요 차이점 이해 Apr 21, 2025 am 12:18 AM

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.

Python Standard Library의 일부는 무엇입니까? 목록 또는 배열은 무엇입니까? Python Standard Library의 일부는 무엇입니까? 목록 또는 배열은 무엇입니까? Apr 27, 2025 am 12:03 AM

Pythonlistsarepartoftsandardlardlibrary, whileraysarenot.listsarebuilt-in, 다재다능하고, 수집 할 수있는 반면, arraysarreprovidedByTearRaymoduledlesscommonlyusedDuetolimitedFunctionality.

파이썬 : 자동화, 스크립팅 및 작업 관리 파이썬 : 자동화, 스크립팅 및 작업 관리 Apr 16, 2025 am 12:14 AM

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

과학 컴퓨팅을위한 파이썬 : 상세한 모양 과학 컴퓨팅을위한 파이썬 : 상세한 모양 Apr 19, 2025 am 12:15 AM

과학 컴퓨팅에서 Python의 응용 프로그램에는 데이터 분석, 머신 러닝, 수치 시뮬레이션 및 시각화가 포함됩니다. 1.numpy는 효율적인 다차원 배열 및 수학적 함수를 제공합니다. 2. Scipy는 Numpy 기능을 확장하고 최적화 및 선형 대수 도구를 제공합니다. 3. 팬더는 데이터 처리 및 분석에 사용됩니다. 4. matplotlib는 다양한 그래프와 시각적 결과를 생성하는 데 사용됩니다.

웹 개발을위한 파이썬 : 주요 응용 프로그램 웹 개발을위한 파이썬 : 주요 응용 프로그램 Apr 18, 2025 am 12:20 AM

웹 개발에서 Python의 주요 응용 프로그램에는 Django 및 Flask 프레임 워크 사용, API 개발, 데이터 분석 및 시각화, 머신 러닝 및 AI 및 성능 최적화가 포함됩니다. 1. Django 및 Flask 프레임 워크 : Django는 복잡한 응용 분야의 빠른 개발에 적합하며 플라스크는 소형 또는 고도로 맞춤형 프로젝트에 적합합니다. 2. API 개발 : Flask 또는 DjangorestFramework를 사용하여 RESTFULAPI를 구축하십시오. 3. 데이터 분석 및 시각화 : Python을 사용하여 데이터를 처리하고 웹 인터페이스를 통해 표시합니다. 4. 머신 러닝 및 AI : 파이썬은 지능형 웹 애플리케이션을 구축하는 데 사용됩니다. 5. 성능 최적화 : 비동기 프로그래밍, 캐싱 및 코드를 통해 최적화

See all articles