Pandas GroupBy를 사용하여 Python에서 그룹별 통계를 계산하는 방법은 무엇입니까?
Pandas GroupBy를 사용하여 그룹별 통계 계산
소개
데이터 작업 시 여러 그룹의 통계를 분석하고 비교하는 것이 바람직한 경우가 많습니다. 데이터 조작을 위한 유명한 Python 라이브러리인 Pandas는 이러한 작업을 손쉽게 수행할 수 있는 GroupBy 기능을 제공합니다.
그룹별 행 개수 가져오기
각 그룹의 행 개수를 가져오는 가장 간단한 방법은 다음을 사용하는 것입니다. .size() 메소드. 이 메소드는 그룹별 개수를 포함하는 시리즈를 반환합니다.
df.groupby(['col1','col2']).size()
표 형식으로 개수를 검색하려면(즉, "counts" 열이 있는 DataFrame으로):
df.groupby(['col1', 'col2']).size().reset_index(name='counts')
여러 그룹별 통계 계산
여러 통계를 계산하려면 사전과 함께 .agg() 메서드를 사용하세요. 키는 계산할 열을 지정하고 값은 원하는 집계 목록(예: '평균', '중앙값', '개수')입니다.
df.groupby(['col1', 'col2']).agg({ 'col3': ['mean', 'count'], 'col4': ['median', 'min', 'count'] })
데이터 출력 사용자 정의
출력을 더 효과적으로 제어하기 위해 개별 집계를 결합할 수 있습니다.
counts = df.groupby(['col1', 'col2']).size().to_frame(name='counts') counts.join(gb.agg({'col3': 'mean'}).rename(columns={'col3': 'col3_mean'})) \ .join(gb.agg({'col4': 'median'}).rename(columns={'col4': 'col4_median'})) \ .join(gb.agg({'col4': 'min'}).rename(columns={'col4': 'col4_min'})) \ .reset_index()
이렇게 하면 보다 구조화된 결과가 생성됩니다. 중첩되지 않은 열 레이블이 있는 DataFrame.
각주
제공된 예에서 null 값은 다양한 계산에 사용되는 행 개수에 불일치를 초래할 수 있습니다. 이는 그룹별 통계를 해석할 때 null 값을 고려하는 것이 중요함을 강조합니다.
위 내용은 Pandas GroupBy를 사용하여 Python에서 그룹별 통계를 계산하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.

Pythonlistsarepartoftsandardlardlibrary, whileraysarenot.listsarebuilt-in, 다재다능하고, 수집 할 수있는 반면, arraysarreprovidedByTearRaymoduledlesscommonlyusedDuetolimitedFunctionality.

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

과학 컴퓨팅에서 Python의 응용 프로그램에는 데이터 분석, 머신 러닝, 수치 시뮬레이션 및 시각화가 포함됩니다. 1.numpy는 효율적인 다차원 배열 및 수학적 함수를 제공합니다. 2. Scipy는 Numpy 기능을 확장하고 최적화 및 선형 대수 도구를 제공합니다. 3. 팬더는 데이터 처리 및 분석에 사용됩니다. 4. matplotlib는 다양한 그래프와 시각적 결과를 생성하는 데 사용됩니다.

웹 개발에서 Python의 주요 응용 프로그램에는 Django 및 Flask 프레임 워크 사용, API 개발, 데이터 분석 및 시각화, 머신 러닝 및 AI 및 성능 최적화가 포함됩니다. 1. Django 및 Flask 프레임 워크 : Django는 복잡한 응용 분야의 빠른 개발에 적합하며 플라스크는 소형 또는 고도로 맞춤형 프로젝트에 적합합니다. 2. API 개발 : Flask 또는 DjangorestFramework를 사용하여 RESTFULAPI를 구축하십시오. 3. 데이터 분석 및 시각화 : Python을 사용하여 데이터를 처리하고 웹 인터페이스를 통해 표시합니다. 4. 머신 러닝 및 AI : 파이썬은 지능형 웹 애플리케이션을 구축하는 데 사용됩니다. 5. 성능 최적화 : 비동기 프로그래밍, 캐싱 및 코드를 통해 최적화
