> 백엔드 개발 > 파이썬 튜토리얼 > PyTorch의 스탠포드 자동차

PyTorch의 스탠포드 자동차

Barbara Streisand
풀어 주다: 2024-12-23 21:38:11
원래의
754명이 탐색했습니다.

커피 한잔 사주세요😄

*내 게시물은 Stanford Cars에 대해 설명합니다.

StanfordCars()는 아래와 같이 Stanford Cars 데이터세트를 사용할 수 있습니다.

*메모:

  • 첫 번째 인수는 루트(필수 유형:str 또는 pathlib.Path)입니다. *절대경로, 상대경로 모두 가능합니다.
  • 두 번째 인수는 분할(Optional-Default:"train"-Type:str)입니다. *"train"(8,144 이미지) 또는 "test"(8,041 이미지)를 설정할 수 있습니다.
  • 세 번째 인수는 변환(Optional-Default:None-Type:callable)입니다.
  • 네 번째 인수는 target_transform(Optional-Default:None-Type:callable)입니다.
  • 다섯 번째 인수는 download(Optional-Default:False-Type:bool)입니다. *메모:
    • True일 경우 원본 URL이 깨져 오류가 발생하므로 False로 유지하세요.
    • 따라서 아래와 같이 여기에서 archive.zip, 여기에서 archive.zip, car_devkit.tgz를 data/stanford_cars/에 수동으로 다운로드하여 추출해야 합니다. *메모:
      • cars_test_annos_withlabels (1).mat의 이름을 cars_test_annos_withlabels.mat로 바꿔야 합니다.
      • cars_annos.mat 및 cars_annos (2).mat는 필요하지 않으며 중복된 파일도 일부 있습니다.
      • 안내도 보실 수 있습니다.
data
 └-stanford_cars
    |-cars_test_annos_withlabels.mat
    |-cars_test
    |  └-*.jpg
    |-cars_train
    |  └-*.jpg
    └-devkit
       |-cars_meta.mat
       |-cars_test_annos.mat
       |-cars_train_annos.mat
       |-eval_train.m
       |-README.txt
       └-train_perfect_preds.txt
로그인 후 복사
from torchvision.datasets import StanfordCars

train_data = StanfordCars(
    root="data"
)

train_data = StanfordCars(
    root="data",
    split="train",
    transform=None,
    target_transform=None,
    download=False
)

test_data = StanfordCars(
    root="data",
    split="test"
)

len(train_data), len(test_data)
# (8144, 8041)

train_data
# Dataset StanfordCars
#     Number of datapoints: 8144
#     Root location: data

train_data.root
# 'data'

train_data._split
# 'train'

print(train_data.transform)
# None

print(train_data.target_transform)
# None

train_data.download
# <bound method StanfordCars.download of Dataset StanfordCars
#     Number of datapoints: 8144
#     Root location: data>

len(train_data.classes), train_data.classes
# (196,
#  ['AM General Hummer SUV 2000', 'Acura RL Sedan 2012', 'Acura TL Sedan 2012',
#   'Acura TL Type-S 2008', ..., 'Volvo 240 Sedan 1993',
#   'Volvo XC90 SUV 2007', 'smart fortwo Convertible 2012'])

train_data[0]
# (<PIL.Image.Image image mode=RGB size=600x400>, 13)

train_data[1]
# (<PIL.Image.Image image mode=RGB size=900x675>, 2)

train_data[2]
# (<PIL.Image.Image image mode=RGB size=640x480>, 90)

train_data[3]
# (<PIL.Image.Image image mode=RGB size=2100x1386>, 133)

train_data[4]
# (<PIL.Image.Image image mode=RGB size=144x108>, 105)

import matplotlib.pyplot as plt

def show_images(data, main_title=None):
    plt.figure(figsize=(12, 5))
    plt.suptitle(t=main_title, y=1.0, fontsize=14)
    for i, (im, lab) in zip(range(1, 11), data):
        plt.subplot(2, 5, i)
        plt.imshow(X=im)
        plt.title(label=lab)
    plt.tight_layout()
    plt.show()

show_images(data=train_data, main_title="train_data")
show_images(data=test_data, main_title="test_data")

show_images(data=train_data, ims=train_ims, main_title="train_data")
show_images(data=train_data, ims=val_ims, main_title="val_data")
show_images(data=test_data, ims=test_ims, main_title="test_data")
로그인 후 복사

StanfordCars in PyTorch

StanfordCars in PyTorch

위 내용은 PyTorch의 스탠포드 자동차의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

원천:dev.to
본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
저자별 최신 기사
인기 튜토리얼
더>
최신 다운로드
더>
웹 효과
웹사이트 소스 코드
웹사이트 자료
프론트엔드 템플릿