활성 개체 패턴은 메서드 실행과 메서드 호출을 분리하는 동시성 디자인 패턴입니다. 이 패턴의 기본 목표는 클라이언트에 동기 인터페이스를 제공하는 동시에 별도의 스레드에서 작업을 실행하여 비동기 동작을 도입하는 것입니다. 이는 메시지 전달, 요청 대기열 및 예약 메커니즘의 조합을 사용하여 달성됩니다.
계산, API 호출, 데이터베이스 쿼리 등을 수행해야 한다고 가정해 보겠습니다. 저는 너무 게으르기 때문에 예외 처리를 구현하지 않을 것입니다.
def compute(x, y): time.sleep(2) # Some time taking task return x + y
다음은 활성 개체 패턴을 사용하지 않고 동시 요청을 처리할 수 있는 방법의 예입니다.
import threading import time def main(): # Start threads directly results = {} def worker(task_id, x, y): results[task_id] = compute(x, y) print("Submitting tasks...") thread1 = threading.Thread(target=worker, args=(1, 5, 10)) thread2 = threading.Thread(target=worker, args=(2, 15, 20)) thread1.start() thread2.start() print("Doing other work...") thread1.join() thread2.join() # Retrieve results print("Result 1:", results[1]) print("Result 2:", results[2]) if __name__ == "__main__": main()
스레드 관리: 스레드를 직접 관리하면 특히 작업 수가 늘어남에 따라 복잡성이 증가합니다.
추상화 부족: 클라이언트는 스레드의 수명 주기를 관리하고 작업 관리와 비즈니스 로직을 결합하는 역할을 담당합니다.
확장성 문제: 적절한 대기열이나 예약 메커니즘이 없으면 작업 실행 순서를 제어할 수 없습니다.
제한된 응답성: 클라이언트는 결과에 액세스하기 전에 스레드가 조인할 때까지 기다려야 합니다.
다음은 위와 동일한 작업을 수행하기 위해 스레딩과 큐를 사용하여 활성 개체 패턴을 Python으로 구현한 것입니다. 각 부분을 하나씩 살펴보겠습니다.
MethodRequest: 결과를 저장할 메서드, 인수 및 Future를 캡슐화합니다.
def compute(x, y): time.sleep(2) # Some time taking task return x + y
스케줄러: 별도의 스레드에서 activate_queue의 요청을 지속적으로 처리합니다.
import threading import time def main(): # Start threads directly results = {} def worker(task_id, x, y): results[task_id] = compute(x, y) print("Submitting tasks...") thread1 = threading.Thread(target=worker, args=(1, 5, 10)) thread2 = threading.Thread(target=worker, args=(2, 15, 20)) thread1.start() thread2.start() print("Doing other work...") thread1.join() thread2.join() # Retrieve results print("Result 1:", results[1]) print("Result 2:", results[2]) if __name__ == "__main__": main()
서번트: 실제 로직(예: 컴퓨팅 메서드)을 구현합니다.
class MethodRequest: def __init__(self, method, args, kwargs, future): self.method = method self.args = args self.kwargs = kwargs self.future = future def execute(self): try: result = self.method(*self.args, **self.kwargs) self.future.set_result(result) except Exception as e: self.future.set_exception(e)
프록시: 메소드 호출을 요청으로 변환하고 결과에 대한 Future를 반환합니다.
import threading import queue class Scheduler(threading.Thread): def __init__(self): super().__init__() self.activation_queue = queue.Queue() self._stop_event = threading.Event() def enqueue(self, request): self.activation_queue.put(request) def run(self): while not self._stop_event.is_set(): try: request = self.activation_queue.get(timeout=0.1) request.execute() except queue.Empty: continue def stop(self): self._stop_event.set() self.join()
클라이언트: 작업을 비동기적으로 제출하고 필요할 때 결과를 검색합니다.
import time class Servant: def compute(self, x, y): time.sleep(2) return x + y
Active Object Pattern은 멀티스레드 환경에서 비동기 작업을 관리하기 위한 강력한 도구입니다. 메소드 호출과 실행을 분리함으로써 더 나은 응답성, 확장성 및 깔끔한 코드베이스를 보장합니다. 약간의 복잡성과 잠재적인 성능 오버헤드가 있지만 그 이점으로 인해 높은 동시성과 예측 가능한 실행이 필요한 시나리오에 탁월한 선택이 됩니다. 그러나 그 사용은 당면한 특정 문제에 따라 달라집니다. 대부분의 패턴 및 알고리즘과 마찬가지로 모든 경우에 적용되는 단일 솔루션은 없습니다.
Wikipedia - 활성 개체
위 내용은 동시성 패턴: 활성 개체의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!