동시성 패턴: 활성 개체
소개
활성 개체 패턴은 메서드 실행과 메서드 호출을 분리하는 동시성 디자인 패턴입니다. 이 패턴의 기본 목표는 클라이언트에 동기 인터페이스를 제공하는 동시에 별도의 스레드에서 작업을 실행하여 비동기 동작을 도입하는 것입니다. 이는 메시지 전달, 요청 대기열 및 예약 메커니즘의 조합을 사용하여 달성됩니다.
주요 구성 요소
- 프록시: 클라이언트에 대한 공개 인터페이스를 나타냅니다. 더 간단하게 말하면 이는 클라이언트가 상호 작용할 대상입니다. 메소드 호출을 활성 객체에 대한 요청으로 변환합니다.
- 스케줄러: 요청 대기열을 관리하고 요청 실행 순서를 결정합니다.
- 서번트: 호출되는 메소드의 실제 구현을 포함합니다. 여기에 실제 계산 논리가 적용됩니다.
- 활성화 대기열: 스케줄러가 처리할 때까지 프록시의 요청을 저장합니다.
- Future/Callback: 비동기 계산 결과에 대한 자리 표시자입니다.
작업 흐름
- 클라이언트가 프록시에서 메소드를 호출합니다.
- 프록시는 요청을 생성하여 활성화 대기열에 넣습니다.
- 스케줄러는 요청을 선택하여 실행을 위해 서번트에게 전달합니다.
- 결과는 future 객체를 통해 클라이언트에 반환됩니다.
사용 사례
- 예측 가능한 실행 패턴이 필요한 실시간 시스템
- 메인 스레드의 응답성을 유지하기 위한 GUI 애플리케이션
- 비동기 요청 처리를 위한 분산 시스템
구현
계산, API 호출, 데이터베이스 쿼리 등을 수행해야 한다고 가정해 보겠습니다. 저는 너무 게으르기 때문에 예외 처리를 구현하지 않을 것입니다.
def compute(x, y): time.sleep(2) # Some time taking task return x + y
활성 개체 패턴 없음
다음은 활성 개체 패턴을 사용하지 않고 동시 요청을 처리할 수 있는 방법의 예입니다.
import threading import time def main(): # Start threads directly results = {} def worker(task_id, x, y): results[task_id] = compute(x, y) print("Submitting tasks...") thread1 = threading.Thread(target=worker, args=(1, 5, 10)) thread2 = threading.Thread(target=worker, args=(2, 15, 20)) thread1.start() thread2.start() print("Doing other work...") thread1.join() thread2.join() # Retrieve results print("Result 1:", results[1]) print("Result 2:", results[2]) if __name__ == "__main__": main()
위 접근 방식의 단점
스레드 관리: 스레드를 직접 관리하면 특히 작업 수가 늘어남에 따라 복잡성이 증가합니다.
추상화 부족: 클라이언트는 스레드의 수명 주기를 관리하고 작업 관리와 비즈니스 로직을 결합하는 역할을 담당합니다.
확장성 문제: 적절한 대기열이나 예약 메커니즘이 없으면 작업 실행 순서를 제어할 수 없습니다.
제한된 응답성: 클라이언트는 결과에 액세스하기 전에 스레드가 조인할 때까지 기다려야 합니다.
Active Object Pattern을 이용한 구현
다음은 위와 동일한 작업을 수행하기 위해 스레딩과 큐를 사용하여 활성 개체 패턴을 Python으로 구현한 것입니다. 각 부분을 하나씩 살펴보겠습니다.
MethodRequest: 결과를 저장할 메서드, 인수 및 Future를 캡슐화합니다.
def compute(x, y): time.sleep(2) # Some time taking task return x + y
스케줄러: 별도의 스레드에서 activate_queue의 요청을 지속적으로 처리합니다.
import threading import time def main(): # Start threads directly results = {} def worker(task_id, x, y): results[task_id] = compute(x, y) print("Submitting tasks...") thread1 = threading.Thread(target=worker, args=(1, 5, 10)) thread2 = threading.Thread(target=worker, args=(2, 15, 20)) thread1.start() thread2.start() print("Doing other work...") thread1.join() thread2.join() # Retrieve results print("Result 1:", results[1]) print("Result 2:", results[2]) if __name__ == "__main__": main()
서번트: 실제 로직(예: 컴퓨팅 메서드)을 구현합니다.
class MethodRequest: def __init__(self, method, args, kwargs, future): self.method = method self.args = args self.kwargs = kwargs self.future = future def execute(self): try: result = self.method(*self.args, **self.kwargs) self.future.set_result(result) except Exception as e: self.future.set_exception(e)
프록시: 메소드 호출을 요청으로 변환하고 결과에 대한 Future를 반환합니다.
import threading import queue class Scheduler(threading.Thread): def __init__(self): super().__init__() self.activation_queue = queue.Queue() self._stop_event = threading.Event() def enqueue(self, request): self.activation_queue.put(request) def run(self): while not self._stop_event.is_set(): try: request = self.activation_queue.get(timeout=0.1) request.execute() except queue.Empty: continue def stop(self): self._stop_event.set() self.join()
클라이언트: 작업을 비동기적으로 제출하고 필요할 때 결과를 검색합니다.
import time class Servant: def compute(self, x, y): time.sleep(2) return x + y
장점
- 분리된 인터페이스: 클라이언트는 실행 세부 사항에 대해 걱정하지 않고 메소드를 호출할 수 있습니다.
- 응답성: 비동기 실행을 통해 클라이언트의 응답성이 유지됩니다.
- 확장성: 다중 동시 요청을 지원합니다.
단점
- 복잡성: 아키텍처 복잡성이 증가합니다.
- 오버헤드: 스레드 및 대기열 관리를 위한 추가 리소스가 필요합니다.
- 대기 시간: 비동기식 처리로 인해 추가 대기 시간이 발생할 수 있습니다.
결론
Active Object Pattern은 멀티스레드 환경에서 비동기 작업을 관리하기 위한 강력한 도구입니다. 메소드 호출과 실행을 분리함으로써 더 나은 응답성, 확장성 및 깔끔한 코드베이스를 보장합니다. 약간의 복잡성과 잠재적인 성능 오버헤드가 있지만 그 이점으로 인해 높은 동시성과 예측 가능한 실행이 필요한 시나리오에 탁월한 선택이 됩니다. 그러나 그 사용은 당면한 특정 문제에 따라 달라집니다. 대부분의 패턴 및 알고리즘과 마찬가지로 모든 경우에 적용되는 단일 솔루션은 없습니다.
참고자료
Wikipedia - 활성 개체
위 내용은 동시성 패턴: 활성 개체의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











Linux 터미널에서 Python 버전을 보려고 할 때 Linux 터미널에서 Python 버전을 볼 때 권한 문제에 대한 솔루션 ... Python을 입력하십시오 ...

Fiddlerevery Where를 사용할 때 Man-in-the-Middle Reading에 Fiddlereverywhere를 사용할 때 감지되는 방법 ...

Python의 Pandas 라이브러리를 사용할 때는 구조가 다른 두 데이터 프레임 사이에서 전체 열을 복사하는 방법이 일반적인 문제입니다. 두 개의 dats가 있다고 가정 해

10 시간 이내에 컴퓨터 초보자 프로그래밍 기본 사항을 가르치는 방법은 무엇입니까? 컴퓨터 초보자에게 프로그래밍 지식을 가르치는 데 10 시간 밖에 걸리지 않는다면 무엇을 가르치기로 선택 하시겠습니까?

Uvicorn은 HTTP 요청을 어떻게 지속적으로 듣습니까? Uvicorn은 ASGI를 기반으로 한 가벼운 웹 서버입니다. 핵심 기능 중 하나는 HTTP 요청을 듣고 진행하는 것입니다 ...

Linux 터미널에서 Python 사용 ...

Investing.com의 크롤링 전략 이해 많은 사람들이 종종 Investing.com (https://cn.investing.com/news/latest-news)에서 뉴스 데이터를 크롤링하려고합니다.
