> 백엔드 개발 > 파이썬 튜토리얼 > PyTorch의 ColorJitter

PyTorch의 ColorJitter

Patricia Arquette
풀어 주다: 2024-12-30 09:20:10
원래의
742명이 탐색했습니다.

커피 한잔 사주세요😄

ColorJitter()는 아래와 같이 0개 이상의 이미지의 밝기, 대비, 채도 및 색조를 변경할 수 있습니다.

*메모:

  • 초기화를 위한 첫 번째 인수는 밝기(Optional-Default:0-Type:float 또는 tuple/list(float))입니다. *메모:
    • 밝기의 범위[최소, 최대]입니다.
    • 0
    • 단일 값이 [최대(0, 1-밝기), 1 밝기]로 변환됩니다.
    • 튜플이나 리스트는 요소가 2개인 1D여야 합니다. *첫 번째 요소는 두 번째 요소보다 작거나 같아야 합니다.
  • 초기화를 위한 두 번째 인수는 대조(Optional-Default:0-Type:float 또는 tuple/list(float))입니다. *메모:
    • 명암대비[최소, 최대]의 범위입니다.
    • 0
    • 단일 값은 [max(0, 1-대비), 1 대비]로 변환됩니다.
    • 튜플이나 리스트는 요소가 2개인 1D여야 합니다. *첫 번째 요소는 두 번째 요소보다 작거나 같아야 합니다.
  • 초기화를 위한 세 번째 인수는 포화(Optional-Default:0-Type:float 또는 tuple/list(float))입니다. *메모:
    • 채도의 범위[최소,최대]입니다.
    • 0
    • 단일 값은 [max(0, 1-채도), 1 채도]로 변환됩니다.
    • 튜플이나 리스트는 요소가 2개인 1D여야 합니다. *첫 번째 요소는 두 번째 요소보다 작거나 같아야 합니다.
  • 초기화를 위한 네 번째 인수는hue(Optional-Default:0-Type:float 또는 tuple/list(float))입니다. *메모:
    • 색상 범위[최소,최대]입니다.
    • -0.5
    • 단일 값이 [-색조, 색조]로 변환됩니다.
    • 튜플이나 리스트는 요소가 2개인 1D여야 합니다. *첫 번째 요소는 두 번째 요소보다 작거나 같아야 합니다.
  • 첫 번째 인수는 img(Required-Type:PIL Image 또는 tensor/tuple/list(int 또는 float))입니다. *메모:
    • 2D 또는 3D여야 합니다. 3D의 경우 가장 깊은 D에는 하나의 요소가 있어야 합니다.
    • img=을 사용하지 마세요.
  • v2는 V1 또는 V2에 따라 사용하는 것이 좋습니다? 어느 것을 사용해야 합니까?.
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import ColorJitter

colorjitter = ColorJitter()
colorjitter = ColorJitter(brightness=0,
                          contrast=0,
                          saturation=0,
                          hue=0)
colorjitter = ColorJitter(brightness=(1.0, 2.0),
                          contrast=(1.0, 1.0),
                          saturation=(1.0, 1.0),
                          hue=(0.0, 0.0))
colorjitter
# ColorJitter()

print(colorjitter.brightness)
# None

print(colorjitter.contrast)
# None

print(colorjitter.saturation)
# None

print(colorjitter.hue)
# None

origin_data = OxfordIIITPet(
    root="data",
    transform=None
    # transform=ColorJitter()
    # colorjitter = ColorJitter(brightness=0,
    #                           contrast=0,
    #                           saturation=0,
    #                           hue=0)
    # transform=ColorJitter(brightness=(1.0, 1.0),
    #                       contrast=(1.0, 1.0),
    #                       saturation=(1.0, 1.0),
    #                       hue=(0.0, 0.0))
)

p2bright_data = OxfordIIITPet( # `p` is plus.
    root="data",
    transform=ColorJitter(brightness=2.0)
    # transform=ColorJitter(brightness=(0.0, 3.0))
)

p2p2bright_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(brightness=(2.0, 2.0))
)

p05p05bright_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(brightness=(0.5, 0.5))
)

p2contra_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(contrast=2.0)
    # transform=ColorJitter(contrast=(0.0, 3.0))
)

p2p2contra_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(contrast=(2.0, 2.0))
)

p05p05contra_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(contrast=(0.5, 0.5))
)

p2satura_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(saturation=2.0)
    # transform=ColorJitter(saturation=(0.0, 3.0))
)

p2p2satura_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(saturation=(2.0, 2.0))
)

p05p05satura_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(saturation=(0.5, 0.5))
)

p05hue_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(hue=0.5)
    # transform=ColorJitter(hue=(-0.5, 0.5))
)

p025p025hue_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(hue=(0.25, 0.25))
)

m025m025hue_data = OxfordIIITPet( # `m` is minus.
    root="data",
    transform=ColorJitter(hue=(-0.25, -0.25))
)

import matplotlib.pyplot as plt

def show_images(data, main_title=None):
    plt.figure(figsize=(10, 5))
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images(data=origin_data, main_title="origin_data")
show_images(data=p2bright_data, main_title="p2bright_data")
show_images(data=p2p2bright_data, main_title="p2p2bright_data")
show_images(data=p05p05bright_data, main_title="p05p05bright_data")

show_images(data=origin_data, main_title="origin_data")
show_images(data=p2contra_data, main_title="p2contra_data")
show_images(data=p2p2contra_data, main_title="p2p2contra_data")
show_images(data=p05p05contra_data, main_title="p05p05contra_data")

show_images(data=origin_data, main_title="origin_data")
show_images(data=p2satura_data, main_title="p2satura_data")
show_images(data=p2p2satura_data, main_title="p2p2satura_data")
show_images(data=p05p05satura_data, main_title="p05p05satura_data")

show_images(data=origin_data, main_title="origin_data")
show_images(data=p05hue_data, main_title="p05hue_data")
show_images(data=p025p025hue_data, main_title="p025p025hue_data")
show_images(data=m025m025hue_data, main_title="m025m025hue_data")
로그인 후 복사
로그인 후 복사

ColorJitter in PyTorch

ColorJitter in PyTorch

ColorJitter in PyTorch

ColorJitter in PyTorch


ColorJitter in PyTorch

ColorJitter in PyTorch

ColorJitter in PyTorch

ColorJitter in PyTorch


ColorJitter in PyTorch

ColorJitter in PyTorch

ColorJitter in PyTorch

ColorJitter in PyTorch


ColorJitter in PyTorch

ColorJitter in PyTorch

ColorJitter in PyTorch

ColorJitter in PyTorch

from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import ColorJitter

colorjitter = ColorJitter()
colorjitter = ColorJitter(brightness=0,
                          contrast=0,
                          saturation=0,
                          hue=0)
colorjitter = ColorJitter(brightness=(1.0, 2.0),
                          contrast=(1.0, 1.0),
                          saturation=(1.0, 1.0),
                          hue=(0.0, 0.0))
colorjitter
# ColorJitter()

print(colorjitter.brightness)
# None

print(colorjitter.contrast)
# None

print(colorjitter.saturation)
# None

print(colorjitter.hue)
# None

origin_data = OxfordIIITPet(
    root="data",
    transform=None
    # transform=ColorJitter()
    # colorjitter = ColorJitter(brightness=0,
    #                           contrast=0,
    #                           saturation=0,
    #                           hue=0)
    # transform=ColorJitter(brightness=(1.0, 1.0),
    #                       contrast=(1.0, 1.0),
    #                       saturation=(1.0, 1.0),
    #                       hue=(0.0, 0.0))
)

p2bright_data = OxfordIIITPet( # `p` is plus.
    root="data",
    transform=ColorJitter(brightness=2.0)
    # transform=ColorJitter(brightness=(0.0, 3.0))
)

p2p2bright_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(brightness=(2.0, 2.0))
)

p05p05bright_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(brightness=(0.5, 0.5))
)

p2contra_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(contrast=2.0)
    # transform=ColorJitter(contrast=(0.0, 3.0))
)

p2p2contra_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(contrast=(2.0, 2.0))
)

p05p05contra_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(contrast=(0.5, 0.5))
)

p2satura_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(saturation=2.0)
    # transform=ColorJitter(saturation=(0.0, 3.0))
)

p2p2satura_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(saturation=(2.0, 2.0))
)

p05p05satura_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(saturation=(0.5, 0.5))
)

p05hue_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(hue=0.5)
    # transform=ColorJitter(hue=(-0.5, 0.5))
)

p025p025hue_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(hue=(0.25, 0.25))
)

m025m025hue_data = OxfordIIITPet( # `m` is minus.
    root="data",
    transform=ColorJitter(hue=(-0.25, -0.25))
)

import matplotlib.pyplot as plt

def show_images(data, main_title=None):
    plt.figure(figsize=(10, 5))
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images(data=origin_data, main_title="origin_data")
show_images(data=p2bright_data, main_title="p2bright_data")
show_images(data=p2p2bright_data, main_title="p2p2bright_data")
show_images(data=p05p05bright_data, main_title="p05p05bright_data")

show_images(data=origin_data, main_title="origin_data")
show_images(data=p2contra_data, main_title="p2contra_data")
show_images(data=p2p2contra_data, main_title="p2p2contra_data")
show_images(data=p05p05contra_data, main_title="p05p05contra_data")

show_images(data=origin_data, main_title="origin_data")
show_images(data=p2satura_data, main_title="p2satura_data")
show_images(data=p2p2satura_data, main_title="p2p2satura_data")
show_images(data=p05p05satura_data, main_title="p05p05satura_data")

show_images(data=origin_data, main_title="origin_data")
show_images(data=p05hue_data, main_title="p05hue_data")
show_images(data=p025p025hue_data, main_title="p025p025hue_data")
show_images(data=m025m025hue_data, main_title="m025m025hue_data")
로그인 후 복사
로그인 후 복사

ColorJitter in PyTorch

ColorJitter in PyTorch

ColorJitter in PyTorch

ColorJitter in PyTorch


ColorJitter in PyTorch

ColorJitter in PyTorch

ColorJitter in PyTorch

ColorJitter in PyTorch


ColorJitter in PyTorch

ColorJitter in PyTorch

ColorJitter in PyTorch

ColorJitter in PyTorch


ColorJitter in PyTorch

ColorJitter in PyTorch

ColorJitter in PyTorch

ColorJitter in PyTorch

위 내용은 PyTorch의 ColorJitter의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

원천:dev.to
본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
저자별 최신 기사
인기 튜토리얼
더>
최신 다운로드
더>
웹 효과
웹사이트 소스 코드
웹사이트 자료
프론트엔드 템플릿