PostgreSQL에서 두 날짜 사이의 근무 시간을 계산하는 방법은 무엇입니까?
PostgreSQL에서 두 날짜 사이의 근무 시간 계산
특정 타임스탬프 사이의 근무 시간을 계산할 때는 주말과 지정된 근무 시간을 고려해야 합니다. PostgreSQL에서는 다양한 기술을 활용하여 이 작업을 수행할 수 있습니다.
반올림 결과
특정 타임스탬프 범위의 경우:
1시간 단위를 고려하세요. 분수를 무시합니다. 공식은 다음과 같습니다.
SELECT count(*) AS work_hours FROM generate_series(timestamp '2013-06-24 13:30', timestamp '2013-06-24 15:29' - interval '1h', interval '1h') h WHERE EXTRACT(ISODOW FROM h) < 6 AND h::time >= '08:00' AND h::time <= '14:00';
전체 테이블의 경우:
-- Table Creation and Data Insertion CREATE TABLE t (t_id int PRIMARY KEY, t_start timestamp, t_end timestamp); INSERT INTO t VALUES (1, '2009-12-03 14:00', '2009-12-04 09:00') , (2, '2009-12-03 15:00', '2009-12-07 08:00') , (3, '2013-06-24 07:00', '2013-06-24 12:00') , (4, '2013-06-24 12:00', '2013-06-24 23:00') , (5, '2013-06-23 13:00', '2013-06-25 11:00') , (6, '2013-06-23 14:01', '2013-06-24 08:59'); -- Main Query SELECT t_id, count(*) AS work_hours FROM ( SELECT t_id, generate_series(t_start, t_end - interval '1h', interval '1h') AS h FROM t ) sub WHERE EXTRACT(ISODOW FROM h) < 6 AND h::time >= '08:00' AND h::time <= '14:00' GROUP BY 1 ORDER BY 1;
더 정확한 결과
더 높은 정밀도를 얻으려면 더 작은 값을 사용하세요. 5분 조각과 같은 시간 단위.
-- Precision with 5-minute Slices SELECT t_id, count(*) * interval '5 min' AS work_interval FROM ( SELECT t_id, generate_series(t_start, t_end - interval '5 min', interval '5 min') AS h FROM t ) sub WHERE EXTRACT(ISODOW FROM h) < 6 AND h::time >= '08:00' AND h::time <= '14:55' -- 15.00 - interval '5 min' GROUP BY 1 ORDER BY 1;
정확함 결과
마이크로초까지 정확한 결과를 얻으려면 시작 시간과 종료 시간을 별도로 처리하세요.
Postgres 8.4 :
WITH var AS (SELECT '08:00'::time AS v_start, '15:00'::time AS v_end) SELECT t_id , COALESCE(h.h, '0') -- add / subtract fractions - CASE WHEN EXTRACT(ISODOW FROM t_start) < 6 AND t_start::time > v_start AND t_start::time < v_end THEN t_start - date_trunc('hour', t_start) ELSE '0'::interval END + CASE WHEN EXTRACT(ISODOW FROM t_end) < 6 AND t_end::time > v_start AND t_end::time < v_end THEN t_end - date_trunc('hour', t_end) ELSE '0'::interval END AS work_interval FROM t CROSS JOIN var LEFT JOIN ( -- count full hours, similar to above solutions SELECT t_id, count(*)::int * interval '1h' AS h FROM ( SELECT t_id, v_start, v_end , generate_series(date_trunc('hour', t_start), date_trunc('hour', t_end) - interval '1h', interval '1h') AS h FROM t, var ) sub WHERE EXTRACT(ISODOW FROM h) < 6 AND h::time >= v_start AND h::time <= v_end - interval '1h' GROUP BY 1 ) h USING (t_id)
위 내용은 PostgreSQL에서 두 날짜 사이의 근무 시간을 계산하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

웹 응용 프로그램에서 MySQL의 주요 역할은 데이터를 저장하고 관리하는 것입니다. 1. MySQL은 사용자 정보, 제품 카탈로그, 트랜잭션 레코드 및 기타 데이터를 효율적으로 처리합니다. 2. SQL 쿼리를 통해 개발자는 데이터베이스에서 정보를 추출하여 동적 컨텐츠를 생성 할 수 있습니다. 3.mysql은 클라이언트-서버 모델을 기반으로 작동하여 허용 가능한 쿼리 속도를 보장합니다.

InnoDB는 Redologs 및 Undologs를 사용하여 데이터 일관성과 신뢰성을 보장합니다. 1. Redologs는 사고 복구 및 거래 지속성을 보장하기 위해 데이터 페이지 수정을 기록합니다. 2. 결점은 원래 데이터 값을 기록하고 트랜잭션 롤백 및 MVCC를 지원합니다.

MySQL은 오픈 소스 관계형 데이터베이스 관리 시스템으로, 주로 데이터를 신속하고 안정적으로 저장하고 검색하는 데 사용됩니다. 작업 원칙에는 클라이언트 요청, 쿼리 해상도, 쿼리 실행 및 반환 결과가 포함됩니다. 사용의 예로는 테이블 작성, 데이터 삽입 및 쿼리 및 조인 작업과 같은 고급 기능이 포함됩니다. 일반적인 오류에는 SQL 구문, 데이터 유형 및 권한이 포함되며 최적화 제안에는 인덱스 사용, 최적화 된 쿼리 및 테이블 분할이 포함됩니다.

데이터베이스 및 프로그래밍에서 MySQL의 위치는 매우 중요합니다. 다양한 응용 프로그램 시나리오에서 널리 사용되는 오픈 소스 관계형 데이터베이스 관리 시스템입니다. 1) MySQL은 웹, 모바일 및 엔터프라이즈 레벨 시스템을 지원하는 효율적인 데이터 저장, 조직 및 검색 기능을 제공합니다. 2) 클라이언트 서버 아키텍처를 사용하고 여러 스토리지 엔진 및 인덱스 최적화를 지원합니다. 3) 기본 사용에는 테이블 작성 및 데이터 삽입이 포함되며 고급 사용에는 다중 테이블 조인 및 복잡한 쿼리가 포함됩니다. 4) SQL 구문 오류 및 성능 문제와 같은 자주 묻는 질문은 설명 명령 및 느린 쿼리 로그를 통해 디버깅 할 수 있습니다. 5) 성능 최적화 방법에는 인덱스의 합리적인 사용, 최적화 된 쿼리 및 캐시 사용이 포함됩니다. 모범 사례에는 거래 사용 및 준비된 체계가 포함됩니다

MySQL은 성능, 신뢰성, 사용 편의성 및 커뮤니티 지원을 위해 선택됩니다. 1.MYSQL은 효율적인 데이터 저장 및 검색 기능을 제공하여 여러 데이터 유형 및 고급 쿼리 작업을 지원합니다. 2. 고객-서버 아키텍처 및 다중 스토리지 엔진을 채택하여 트랜잭션 및 쿼리 최적화를 지원합니다. 3. 사용하기 쉽고 다양한 운영 체제 및 프로그래밍 언어를 지원합니다. 4. 강력한 지역 사회 지원을 받고 풍부한 자원과 솔루션을 제공합니다.

다른 프로그래밍 언어와 비교할 때 MySQL은 주로 데이터를 저장하고 관리하는 데 사용되는 반면 Python, Java 및 C와 같은 다른 언어는 논리적 처리 및 응용 프로그램 개발에 사용됩니다. MySQL은 데이터 관리 요구에 적합한 고성능, 확장 성 및 크로스 플랫폼 지원으로 유명하며 다른 언어는 데이터 분석, 엔터프라이즈 애플리케이션 및 시스템 프로그래밍과 같은 해당 분야에서 이점이 있습니다.

MySQL은 소규모 및 대기업에 적합합니다. 1) 소기업은 고객 정보 저장과 같은 기본 데이터 관리에 MySQL을 사용할 수 있습니다. 2) 대기업은 MySQL을 사용하여 대규모 데이터 및 복잡한 비즈니스 로직을 처리하여 쿼리 성능 및 트랜잭션 처리를 최적화 할 수 있습니다.

MySQL Index Cardinality는 쿼리 성능에 중대한 영향을 미칩니다. 1. 높은 카디널리티 인덱스는 데이터 범위를보다 효과적으로 좁히고 쿼리 효율성을 향상시킬 수 있습니다. 2. 낮은 카디널리티 인덱스는 전체 테이블 스캔으로 이어질 수 있으며 쿼리 성능을 줄일 수 있습니다. 3. 관절 지수에서는 쿼리를 최적화하기 위해 높은 카디널리티 시퀀스를 앞에 놓아야합니다.
