다른 방법을 사용하여 Pandas DataFrame을 어떻게 피벗할 수 있나요?
데이터프레임을 피벗하려면 어떻게 해야 하나요?
개요
DataFrame을 피벗하려면 데이터 방향을 변경하기 위해 데이터를 재배열해야 합니다. 행은 열이 되고, 열은 행이 됩니다. 이는 Pandas의ivot_table, groupby unstack, set_index unstack, 피벗 및 크로스탭 방법을 포함하여 여러 가지 방법으로 수행할 수 있습니다.
피벗 방법
- pivot_table은 데이터 피버팅. 피벗된 DataFrame의 행, 열, 값은 물론 사용할 집계 함수도 지정할 수 있습니다.
- groupby unstack은 데이터 프레임을 생성하기 위한 groupby 및 unstack 메소드의 조합입니다. 여기서는 데이터를 특정 열로 그룹화한 다음 그룹화하여 생성된 새 인덱스의 레벨을 unstack하여 데이터를 피벗합니다.
- set_index unstack은 데이터를 피벗하는 데 유용한 또 다른 기술입니다. set_index는 DataFrame의 인덱스를 지정된 열로 설정하고 unstack은 현재 계층적 인덱스를 해당 셀의 값이 있는 열 헤더로 변경합니다.
- pivot은 데이터를 피벗하는 스칼라 방법입니다. . 스칼라(1차원) 값 열에만 사용해야 합니다. 이 방법은 데이터 프레임 열을 행 인덱스로 피벗하거나 행에서 열 매트릭스 값으로 피벗할 수 있습니다.
- crosstab은 인덱스/행 및 열을 행 및 열 헤더로 사용하여 교차표를 쉽게 생성할 수 있는ivot_table의 특수 버전입니다. .
코드 데모
다음은 DataFrame의 간단한 예입니다. 피벗:
import pandas as pd # Create a DataFrame name df df = pd.DataFrame({'Name' : ['Alice', 'Bob', 'Carol', 'Dave'], 'Age' : [20, 25, 30, 35], 'City' : ['New York', 'Boston', 'Chicago', 'Dallas']}) # Pivot the DataFrame using pivot_table method df_pivoted = df.pivot_table(index = 'Name', columns = 'City', values = 'Age') # Display the pivoted DataFrame print(df_pivoted)
출력:
City Boston Chicago Dallas New York Name Alice NaN NaN NaN 20 Bob 25 NaN NaN NaN Carol NaN 30 NaN NaN Dave NaN NaN 35 NaN
결론
pandas의 피벗 방법은 데이터를 교체하여 긴 형식에서 와이드 형식으로 변환하는 데 사용됩니다. 데이터 프레임의 행과 열. 이러한 모든 방법은 복잡한 수준의 데이터를 이해하는 데 매우 유용하므로 필요에 따라 위에 설명된 방법 중 하나를 선택할 수 있습니다. 데이터 프레임 피버팅에 대한 귀하의 의심이 명확해지기를 바랍니다. 문제가 발생하면 언제든지 이 토론을 계속하세요.
위 내용은 다른 방법을 사용하여 Pandas DataFrame을 어떻게 피벗할 수 있나요?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

Python은 데이터 과학, 웹 개발 및 자동화 작업에 적합한 반면 C는 시스템 프로그래밍, 게임 개발 및 임베디드 시스템에 적합합니다. Python은 단순성과 강력한 생태계로 유명하며 C는 고성능 및 기본 제어 기능으로 유명합니다.

Python은 게임 및 GUI 개발에서 탁월합니다. 1) 게임 개발은 Pygame을 사용하여 드로잉, 오디오 및 기타 기능을 제공하며 2D 게임을 만드는 데 적합합니다. 2) GUI 개발은 Tkinter 또는 PYQT를 선택할 수 있습니다. Tkinter는 간단하고 사용하기 쉽고 PYQT는 풍부한 기능을 가지고 있으며 전문 개발에 적합합니다.

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

Pythonlistsarepartoftsandardlardlibrary, whileraysarenot.listsarebuilt-in, 다재다능하고, 수집 할 수있는 반면, arraysarreprovidedByTearRaymoduledlesscommonlyusedDuetolimitedFunctionality.

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.
