PyTorch의 서브

DDD
풀어 주다: 2025-01-03 09:15:39
원래의
979명이 탐색했습니다.

sub in PyTorch

커피 한잔 사주세요😄

*메모:

  • 내 게시물에 add()에 대한 설명이 나와 있습니다.
  • 내 게시물에는 mul()에 대한 설명이 나와 있습니다.
  • 내 게시물에서는 div()에 대해 설명합니다.
  • 내 게시물에서는 나머지()에 대해 설명합니다.
  • 내 게시물에서는 fmod()에 대해 설명합니다.

sub()는 0개 이상의 요소 또는 스칼라로 구성된 0D 이상의 D 텐서 또는 0개 이상의 요소로 구성된 0D 이상의 D 텐서와 스칼라 중 두 개를 사용하여 0D 이상의 D 텐서를 0으로 얻을 수 있습니다. 또는 아래와 같은 요소 이상:

*메모:

  • sub()는 토치나 텐서와 함께 사용할 수 있습니다.
  • 토치(유형: 텐서 또는 스칼라 int, float 또는 complex) 또는 텐서(유형: tensor of int, float 또는 complex)를 사용하는 첫 번째 인수(입력)(필수).
  • torch의 두 번째 인수 또는 텐서의 첫 번째 인수가 other(필수 유형: 텐서 또는 int 스칼라, float 또는 complex)입니다.
  • torch의 세 번째 인수 또는 텐서의 두 번째 인수는 alpha(Optional-Default:1-Type:tensor 또는 int, float 또는 complex의 스칼라)입니다. *other는 알파(입력 또는 텐서-(otherxalpha))를 곱합니다.
  • 토치에 out 인수가 있습니다(Optional-Default:None-Type:tensor): *메모:
    • out=을 사용해야 합니다.
    • 내 게시물이 주장을 설명합니다.
  • subtract()는 sub()의 별칭입니다.
import torch

tensor1 = torch.tensor([9, 7, 6])
tensor2 = torch.tensor([[4, -4, 3], [-2, 5, -5]])

torch.sub(input=tensor1, other=tensor2)
tensor1.sub(other=tensor2)
torch.sub(input=tensor1, other=tensor2, alpha=1)
torch.sub(input=tensor1, other=tensor2, alpha=torch.tensor(1))
# tensor([[5, 11, 3], [11, 2, 11]])

torch.sub(input=tensor1, other=tensor2, alpha=0)
torch.sub(input=tensor1, other=tensor2, alpha=torch.tensor(0))
# tensor([[9, 7, 6], [9, 7, 6]])

torch.sub(input=tensor1, other=tensor2, alpha=2)
torch.sub(input=tensor1, other=tensor2, alpha=torch.tensor(2))
# tensor([[1, 15, 0], [13, -3, 16]])

torch.sub(input=tensor1, other=tensor2, alpha=-1)
torch.sub(input=tensor1, other=tensor2, alpha=torch.tensor(-1))
# tensor([[13, 3, 9], [7, 12, 1]])

torch.sub(input=tensor1, other=tensor2, alpha=-2)
torch.sub(input=tensor1, other=tensor2, alpha=torch.tensor(-2))
# tensor([[17, -1, 12], [5, 17, -4]])

torch.sub(input=9, other=tensor2)
torch.sub(input=9, other=tensor2, alpha=1)
torch.sub(input=9, other=tensor2, alpha=torch.tensor(1))
# tensor([[5, 13, 6], [11, 4, 14]])

torch.sub(input=tensor1, other=4)
torch.sub(input=tensor1, other=4, alpha=1)
torch.sub(input=tensor1, other=4, alpha=torch.tensor(1))
# tensor([5, 3, 2])

torch.sub(input=9, other=4)
torch.sub(input=9, other=4, alpha=1)
torch.sub(input=9, other=4, alpha=torch.tensor(1))
# tensor(5)

tensor1 = torch.tensor([9., 7., 6.])
tensor2 = torch.tensor([[4., -4., 3.], [-2., 5., -5.]])

torch.sub(input=tensor1, other=tensor2)
torch.sub(input=tensor1, other=tensor2, alpha=1.)
torch.sub(input=tensor1, other=tensor2, alpha=torch.tensor(1.))
# tensor([[5., 11., 3.], [11., 2., 11.]])

torch.sub(input=9., other=tensor2)
torch.sub(input=9., other=tensor2, alpha=1.)
torch.sub(input=9., other=tensor2, alpha=torch.tensor(1.))
# tensor([[5., 13., 6.], [11., 4., 14.]])

torch.sub(input=tensor1, other=4)
torch.sub(input=tensor1, other=4, alpha=1.)
torch.sub(input=tensor1, other=4, alpha=torch.tensor(1.))
# tensor([5., 3., 2.])

torch.sub(input=9., other=4)
torch.sub(input=9., other=4, alpha=1.)
torch.sub(input=9., other=4, alpha=torch.tensor(1.))
# tensor(5.)

tensor1 = torch.tensor([9.+0.j, 7.+0.j, 6.+0.j])
tensor2 = torch.tensor([[4.+0.j, -4.+0.j, 3.+0.j],
                        [-2.+0.j, 5.+0.j, -5.+0.j]])
torch.sub(input=tensor1, other=tensor2)
torch.sub(input=tensor1, other=tensor2, alpha=1.+0.j)
torch.sub(input=tensor1, other=tensor2, alpha=torch.tensor(1.+0.j))
# tensor([[5.+0.j, 11.+0.j, 3.+0.j],
#         [11.+0.j, 2.+0.j, 11.+0.j]])

torch.sub(input=9.+0.j, other=tensor2)
torch.sub(input=9.+0.j, other=tensor2, alpha=1.+0.j)
torch.sub(input=9.+0.j, other=tensor2, alpha=torch.tensor(1.+0.j))
# tensor([[5.+0.j, 13.+0.j, 6.+0.j],
#         [11.+0.j, 4.+0.j, 14.+0.j]])

torch.sub(input=tensor1, other=4.+0.j)
torch.sub(input=tensor1, other=4.+0.j, alpha=1.+0.j)
torch.sub(input=tensor1, other=4.+0.j, alpha=torch.tensor(1.+0.j))
# tensor([5.+0.j, 3.+0.j, 2.+0.j])

torch.sub(input=9.+0.j, other=4.+0.j)
torch.sub(input=9.+0.j, other=4.+0.j, alpha=1.+0.j)
torch.sub(input=9.+0.j, other=4.+0.j, alpha=torch.tensor(1.+0.j))
# tensor(5.+0.j)
로그인 후 복사

위 내용은 PyTorch의 서브의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

원천:dev.to
본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
인기 튜토리얼
더>
최신 다운로드
더>
웹 효과
웹사이트 소스 코드
웹사이트 자료
프론트엔드 템플릿