> 백엔드 개발 > 파이썬 튜토리얼 > IRIS-RAG-Gen: IRIS 벡터 검색으로 구동되는 ChatGPT RAG 애플리케이션 개인화

IRIS-RAG-Gen: IRIS 벡터 검색으로 구동되는 ChatGPT RAG 애플리케이션 개인화

Patricia Arquette
풀어 주다: 2025-01-03 16:56:39
원래의
289명이 탐색했습니다.

IRIS-RAG-Gen: Personalizing ChatGPT RAG Application Powered by IRIS Vector Search

안녕하세요 커뮤니티 여러분,

이 글에서는 제 애플리케이션인 iris-RAG-Gen을 소개하겠습니다.

Iris-RAG-Gen은 Streamlit 웹 프레임워크, LangChain 및 OpenAI의 도움으로 IRIS 벡터 검색 기능을 활용하여 ChatGPT를 개인화하는 생성형 AI RAG(검색 증강 생성) 애플리케이션입니다. 이 애플리케이션은 IRIS를 벡터 저장소로 사용합니다.
IRIS-RAG-Gen: Personalizing ChatGPT RAG Application Powered by IRIS Vector Search

애플리케이션 기능

  • 문서(PDF 또는 TXT)를 IRIS에 수집
  • 선택한 처리 문서와 채팅
  • 수집된 문서 삭제
  • 오픈AI 챗GPT

문서(PDF 또는 TXT)를 IRIS로 수집

문서를 수집하려면 아래 단계를 따르세요.

  • OpenAI 키 입력
  • 문서 선택(PDF 또는 TXT)
  • 문서 설명 입력
  • 문서 수집 버튼을 클릭하세요

IRIS-RAG-Gen: Personalizing ChatGPT RAG Application Powered by IRIS Vector Search
 

문서 수집 기능은 문서 세부정보를 rag_documents 테이블에 삽입하고 'rag_document id'(rag_documents의 ID) 테이블을 생성하여 벡터 데이터를 저장합니다.

IRIS-RAG-Gen: Personalizing ChatGPT RAG Application Powered by IRIS Vector Search

아래 Python 코드는 선택한 문서를 벡터로 저장합니다.

from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import PyPDFLoader, TextLoader
from langchain_iris import IRISVector
from langchain_openai import OpenAIEmbeddings
from sqlalchemy import create_engine,text

<span>class RagOpr:</span>
    #Ingest document. Parametres contains file path, description and file type  
    <span>def ingestDoc(self,filePath,fileDesc,fileType):</span>
        embeddings = OpenAIEmbeddings() 
        #Load the document based on the file type
        if fileType == "text/plain":
            loader = TextLoader(filePath)       
        elif fileType == "application/pdf":
            loader = PyPDFLoader(filePath)       
        
        #load data into documents
        documents = loader.load()        
        
        text_splitter = RecursiveCharacterTextSplitter(chunk_size=400, chunk_overlap=0)
        #Split text into chunks
        texts = text_splitter.split_documents(documents)
        
        #Get collection Name from rag_doucments table. 
        COLLECTION_NAME = self.get_collection_name(fileDesc,fileType)
               
        # function to create collection_name table and store vector data in it.
        db = IRISVector.from_documents(
            embedding=embeddings,
            documents=texts,
            collection_name = COLLECTION_NAME,
            connection_string=self.CONNECTION_STRING,
        )

    #Get collection name
    <span>def get_collection_name(self,fileDesc,fileType):</span>
        # check if rag_documents table exists, if not then create it 
        with self.engine.connect() as conn:
            with conn.begin():     
                sql = text("""
                    SELECT *
                    FROM INFORMATION_SCHEMA.TABLES
                    WHERE TABLE_SCHEMA = 'SQLUser'
                    AND TABLE_NAME = 'rag_documents';
                    """)
                result = []
                try:
                    result = conn.execute(sql).fetchall()
                except Exception as err:
                    print("An exception occurred:", err)               
                    return ''
                #if table is not created, then create rag_documents table first
                if len(result) == 0:
                    sql = text("""
                        CREATE TABLE rag_documents (
                        description VARCHAR(255),
                        docType VARCHAR(50) )
                        """)
                    try:    
                        result = conn.execute(sql) 
                    except Exception as err:
                        print("An exception occurred:", err)                
                        return ''
        #Insert description value 
        with self.engine.connect() as conn:
            with conn.begin():     
                sql = text("""
                    INSERT INTO rag_documents 
                    (description,docType) 
                    VALUES (:desc,:ftype)
                    """)
                try:    
                    result = conn.execute(sql, {'desc':fileDesc,'ftype':fileType})
                except Exception as err:
                    print("An exception occurred:", err)                
                    return ''
                #select ID of last inserted record
                sql = text("""
                    SELECT LAST_IDENTITY()
                """)
                try:
                    result = conn.execute(sql).fetchall()
                except Exception as err:
                    print("An exception occurred:", err)
                    return ''
        return "rag_document"+str(result[0][0])
로그인 후 복사

 

벡터 데이터를 검색하려면 관리 포털에서 아래 SQL 명령을 입력하세요

SELECT top 5
id, embedding, document, metadata
FROM SQLUser.rag_document2
로그인 후 복사

IRIS-RAG-Gen: Personalizing ChatGPT RAG Application Powered by IRIS Vector Search

 

선택한 처리 문서와 채팅

채팅 옵션 선택 섹션에서 문서를 선택하고 질문을 입력하세요. 애플리케이션은 벡터 데이터를 읽고 관련 답변을 반환합니다
IRIS-RAG-Gen: Personalizing ChatGPT RAG Application Powered by IRIS Vector Search

아래 Python 코드는 선택한 문서를 벡터로 저장합니다.

from langchain_iris import IRISVector
from langchain_openai import OpenAIEmbeddings,ChatOpenAI
from langchain.chains import ConversationChain
from langchain.chains.conversation.memory import ConversationSummaryMemory
from langchain.chat_models import ChatOpenAI


<span>class RagOpr:</span>
    <span>def ragSearch(self,prompt,id):</span>
        #Concat document id with rag_doucment to get the collection name
        COLLECTION_NAME = "rag_document"+str(id)
        embeddings = OpenAIEmbeddings() 
        #Get vector store reference
        db2 = IRISVector (
            embedding_function=embeddings,    
            collection_name=COLLECTION_NAME,
            connection_string=self.CONNECTION_STRING,
        )
        #Similarity search
        docs_with_score = db2.similarity_search_with_score(prompt)
        #Prepair the retrieved documents to pass to LLM
        relevant_docs = ["".join(str(doc.page_content)) + " " for doc, _ in docs_with_score]
        #init LLM
        llm = ChatOpenAI(
            temperature=0,    
            model_name="gpt-3.5-turbo"
        )
        #manage and handle LangChain multi-turn conversations
        conversation_sum = ConversationChain(
            llm=llm,
            memory= ConversationSummaryMemory(llm=llm),
            verbose=False
        )
        #Create prompt
        template = f"""
        Prompt: <span>{prompt}
        Relevant Docuemnts: {relevant_docs}
        """</span>
        #Return the answer
        resp = conversation_sum(template)
        return resp['response']

    
로그인 후 복사


자세한 내용은 iris-RAG-Gen 공개 교환 신청 페이지를 참조하세요.

감사합니다

위 내용은 IRIS-RAG-Gen: IRIS 벡터 검색으로 구동되는 ChatGPT RAG 애플리케이션 개인화의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
저자별 최신 기사
인기 튜토리얼
더>
최신 다운로드
더>
웹 효과
웹사이트 소스 코드
웹사이트 자료
프론트엔드 템플릿