백엔드 개발 파이썬 튜토리얼 PyTorch의 CocoDetection (3)

PyTorch의 CocoDetection (3)

Jan 08, 2025 pm 02:13 PM

커피 한잔 사주세요😄

*메모:

  • 내 게시물에서는 captions_train2014.json, 인스턴스_train2014.json 및 person_keypoints_train2014.json이 있는 train2014, captions_val2014.json, 인스턴스_val2014.json 및 person_keypoints_val2014.json이 있는 val2014 및 image_info_test2014.json이 있는 test2017을 사용하는 CocoDetection()에 대해 설명합니다. image_info_test2015.json 및 image_info_test-dev2015.json.
  • 내 게시물에서는 captions_train2017.json, 인스턴스_train2017.json 및 person_keypoints_train2017.json이 포함된 train2017, captions_val2017.json이 포함된 val2017, 인스턴스_val2017.json 및 person_keypoints_val2017.json 및 image_info_test2017.json이 포함된 test2017을 사용하는 CocoDetection()에 대해 설명합니다. image_info_test-dev2017.json.
  • 제 글은 MS COCO에 대한 설명입니다.

CocoDetection()은 아래와 같이 MS COCO 데이터세트를 사용할 수 있습니다. *이것은 stuff_train2017.json이 포함된 train2017, stuff_val2017.json이 포함된 val2017, stuff_train2017.json이 포함된 stuff_train2017_pixelmaps, stuff_val2017.json이 포함된 stuff_val2017_pixelmaps, panoptic_train2017.json이 포함된 panoptic_train2017, panoptic_train2017.json이 포함된 panoptic_val2017의 경우입니다. panoptic_val2017.json 및 unlabeled2017(image_info_unlabeled2017.json 포함):

from torchvision.datasets import CocoDetection

stf_train2017_data = CocoDetection(
    root="data/coco/imgs/train2017",
    annFile="data/coco/anns/stuff_trainval2017/stuff_train2017.json"
)

stf_val2017_data = CocoDetection(
    root="data/coco/imgs/val2017",
    annFile="data/coco/anns/stuff_trainval2017/stuff_val2017.json"
)

len(stf_train2017_data), len(stf_val2017_data)
# (118287, 5000)

# pms_stf_train2017_data = CocoDetection(
#     root="data/coco/anns/stuff_trainval2017/stuff_train2017_pixelmaps",
#     annFile="data/coco/anns/stuff_trainval2017/stuff_train2017.json"
# ) # Error

# pms_stf_val2017_data = CocoDetection(
#     root="data/coco/anns/stuff_trainval2017/stuff_val2017_pixelmaps",
#     annFile="data/coco/anns/stuff_trainval2017/stuff_val2017.json"
# ) # Error

# pan_train2017_data = CocoDetection(
#     root="data/coco/anns/panoptic_trainval2017/panoptic_train2017",
#     annFile="data/coco/anns/panoptic_trainval2017/panoptic_train2017.json"
# ) # Error

# pan_val2017_data = CocoDetection(
#     root="data/coco/anns/panoptic_trainval2017/panoptic_val2017",
#     annFile="data/coco/anns/panoptic_trainval2017/panoptic_val2017.json"
# ) # Error

unlabeled2017_data = CocoDetection(
    root="data/coco/imgs/unlabeled2017",
    annFile="data/coco/anns/unlabeled2017/image_info_unlabeled2017.json"
)

len(unlabeled2017_data)
# 123403

stf_train2017_data[2]
# (<PIL.Image.Image image mode=RGB size=640x428>,
#  [{'segmentation': {'counts': 'W2a0S2Q1T7mNmHS1R7mN...0100000000',
#    'size': [428, 640]}, 'area': 112666.0, 'iscrowd': 0, 'image_id': 30, 
#    'bbox': [0.0, 0.0, 640.0, 321.0], 'category_id': 119, 'id': 10000010},
#   {'segmentation': ..., 'category_id': 124, 'id': 10000011},
#   ...
#   {'segmentation': ..., 'category_id': 183, 'id': 10000014}])

stf_train2017_data[47]
# (<PIL.Image.Image image mode=RGB size=640x427>,
#  [{'segmentation': {'counts': '\\j1h0[<a0G2N001O0...00001O0000',
#    'size': [427, 640]}, 'area': 65213.0, 'iscrowd': 0, 'image_id': 294,
#    'bbox': [140.0, 0.0, 500.0, 326.0], 'category_id': 98, 'id': 10000284}, 
#   {'segmentation': ..., 'category_id': 123, 'id': 10000285},
#   ...
#   {'segmentation': ..., 'category_id': 183, 'id': 10000291}])

stf_train2017_data[64]
# (<PIL.Image.Image image mode=RGB size=480x640>,
#  [{'segmentation': {'counts': '0[9e:1O000000O100000...O5mc0F^Zj7',
#    'size': [640, 480]}, 'area': 20503.0, 'iscrowd': 0, 'image_id': 370,
#    'bbox': [0.0, 0.0, 79.0, 316.0], 'category_id': 102, 'id': 10000383},
#   {'segmentation': ..., 'category_id': 105, 'id': 10000384},
#   ...
#   {'segmentation': ..., 'category_id': 183, 'id': 10000389}])

stf_val2017_data[2]
# (<PIL.Image.Image image mode=RGB size=640x483>,
#  [{'segmentation': {'counts': '\9g5]9O1O1O;EU1kNU1...VMKQ?NY`d3',
#    'size': [483, 640]}, 'area': 5104.0, 'iscrowd': 0, 'image_id': 632,
#    'bbox': [0.0, 300.0, 392.0, 183.0], 'category_id': 93, 'id': 20000017},
#   {'segmentation': ..., 'category_id': 128, 'id': 20000018},
#   ...
#   {'segmentation': ..., 'category_id': 183, 'id': 20000020}])

stf_val2017_data[47]
# (<PIL.Image.Image image mode=RGB size=640x480>,
#  [{'segmentation': {'counts': '[da7T1X>D3M2J5M4M4LoQg1',
#    'size': [480, 640]}, 'area': 122.0, 'iscrowd': 0, 'image_id': 5001,
#    'bbox': [515.0, 235.0, 7.0, 36.0], 'category_id': 104, 'id': 20000247},
#   {'segmentation': ..., 'category_id': 105, 'id': 20000248},
#   ...
#   {'segmentation': ..., 'category_id': 183, 'id': 20000256}])

stf_val2017_data[64]
# (<PIL.Image.Image image mode=RGB size=640x483>,
#  [{'segmentation': {'counts': 'U<^1W>N020mN]B2e>N1O...Mb@N^?2hd2',
#    'size': [500, 375]}, 'area': 2404.0, 'iscrowd': 0, 'image_id': 6763,
#    'bbox': [0.0, 235.0, 369.0, 237.0], 'category_id': 105, 'id': 20000356},
#   {'segmentation': ..., 'category_id': 123, 'id': 20000357},
#   ...
#   {'segmentation': ..., 'category_id': 183, 'id': 20000362}])

unlabeled2017_data[2]
# (<PIL.Image.Image image mode=RGB size=640x427>, [])

unlabeled2017_data[47]
# (<PIL.Image.Image image mode=RGB size=428x640>, [])

unlabeled2017_data[64]
# (<PIL.Image.Image image mode=RGB size=640x480>, [])

import matplotlib.pyplot as plt
from matplotlib.patches import Polygon, Rectangle
import numpy as np
from pycocotools import mask

# `show_images1()` doesn't work very well for the images with
# segmentations so for it, use `show_images2()` which
# more uses the original coco functions. 
def show_images1(data, ims, main_title=None):
    file = data.root.split('/')[-1]
    fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(14, 8))
    fig.suptitle(t=main_title, y=0.9, fontsize=14)
    for i, axis in zip(ims, axes.ravel()):
        if data[i][1] and "segmentation" in data[i][1][0]:
            im, anns = data[i]
            axis.imshow(X=im)
            axis.set_title(label=anns[0]["image_id"])
            ec = ['g', 'r', 'c', 'm', 'y', 'w']
            ec_index = 0
            for ann in anns:
                seg = ann['segmentation']
                compressed_rld = mask.decode(rleObjs=seg)
                y_plts, x_plts = np.nonzero(a=np.squeeze(a=compressed_rld))
                axis.plot(x_plts, y_plts, alpha=0.4)
                x, y, w, h = ann['bbox']
                rect = Rectangle(xy=(x, y), width=w, height=h,
                                 linewidth=3, edgecolor=ec[ec_index],
                                 facecolor='none', zorder=2)
                ec_index += 1
                if ec_index == len(ec)-1:
                    ec_index = 0
                axis.add_patch(p=rect)
        elif not data[i][1]:
            im, _ = data[i]
            axis.imshow(X=im)
    fig.tight_layout()
    plt.show()

ims = (2, 47, 64)

show_images1(data=stf_train2017_data, ims=ims,
             main_title="stf_train2017_data")
show_images1(data=stf_val2017_data, ims=ims, 
             main_title="stf_val2017_data")
show_images1(data=unlabeled2017_data, ims=ims,
             main_title="unlabeled2017_data")

def show_images2(data, index, main_title=None):
    img_set = data[index]
    img, img_anns = img_set
    if img_anns and "segmentation" in img_anns[0]:
        img_id = img_anns[0]['image_id']
        coco = data.coco
        def show_image(imgIds, areaRng=[],
                       iscrowd=None, draw_bbox=False):
            plt.figure(figsize=(11, 8))
            plt.imshow(X=img)
            plt.suptitle(t=main_title, y=1, fontsize=14)
            plt.title(label=img_id, fontsize=14)
            anns_ids = coco.getAnnIds(imgIds=img_id,
                                      areaRng=areaRng, iscrowd=iscrowd)
            anns = coco.loadAnns(ids=anns_ids)
            coco.showAnns(anns=anns, draw_bbox=draw_bbox)
            plt.show()
        show_image(imgIds=img_id, draw_bbox=True)
        show_image(imgIds=img_id, draw_bbox=False)
        show_image(imgIds=img_id, iscrowd=False, draw_bbox=True)
        show_image(imgIds=img_id, areaRng=[0, 5000], draw_bbox=True)
    elif not img_anns:
        plt.figure(figsize=(11, 8))
        plt.imshow(X=img)
        plt.suptitle(t=main_title, y=1, fontsize=14)
        plt.show()

show_images2(data=stf_val2017_data, index=47, 
             main_title="stf_train2017_data")
로그인 후 복사

show_images1():

Image description

Image description

Image description

show_images2():

Image description

Image description

Image description

Image description

위 내용은 PyTorch의 CocoDetection (3)의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

뜨거운 기사 태그

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

HTML을 구문 분석하기 위해 아름다운 수프를 어떻게 사용합니까? HTML을 구문 분석하기 위해 아름다운 수프를 어떻게 사용합니까? Mar 10, 2025 pm 06:54 PM

HTML을 구문 분석하기 위해 아름다운 수프를 어떻게 사용합니까?

파이썬에서 파일을 다운로드하는 방법 파이썬에서 파일을 다운로드하는 방법 Mar 01, 2025 am 10:03 AM

파이썬에서 파일을 다운로드하는 방법

파이썬의 이미지 필터링 파이썬의 이미지 필터링 Mar 03, 2025 am 09:44 AM

파이썬의 이미지 필터링

Python을 사용하여 텍스트 파일의 ZIPF 배포를 찾는 방법 Python을 사용하여 텍스트 파일의 ZIPF 배포를 찾는 방법 Mar 05, 2025 am 09:58 AM

Python을 사용하여 텍스트 파일의 ZIPF 배포를 찾는 방법

Python을 사용하여 PDF 문서를 사용하는 방법 Python을 사용하여 PDF 문서를 사용하는 방법 Mar 02, 2025 am 09:54 AM

Python을 사용하여 PDF 문서를 사용하는 방법

Django 응용 프로그램에서 Redis를 사용하여 캐시하는 방법 Django 응용 프로그램에서 Redis를 사용하여 캐시하는 방법 Mar 02, 2025 am 10:10 AM

Django 응용 프로그램에서 Redis를 사용하여 캐시하는 방법

Tensorflow 또는 Pytorch로 딥 러닝을 수행하는 방법은 무엇입니까? Tensorflow 또는 Pytorch로 딥 러닝을 수행하는 방법은 무엇입니까? Mar 10, 2025 pm 06:52 PM

Tensorflow 또는 Pytorch로 딥 러닝을 수행하는 방법은 무엇입니까?

NLTK (Natural Language Toolkit) 소개 NLTK (Natural Language Toolkit) 소개 Mar 01, 2025 am 10:05 AM

NLTK (Natural Language Toolkit) 소개

See all articles