데이터 오케스트레이션 도구 분석: Airflow, Dagster, Flyte
데이터 오케스트레이션 대결: Apache Airflow, Dagster 및 Flyte
현대적인 데이터 워크플로에는 강력한 조정이 필요합니다. Apache Airflow, Dagster 및 Flyte는 각각 뚜렷한 장점과 철학을 갖고 있어 널리 사용되는 선택입니다. 기상 데이터 파이프라인의 실제 경험을 바탕으로 한 이러한 비교는 올바른 도구를 선택하는 데 도움이 됩니다.
사업개요
이 분석은 기상 데이터 파이프라인 프로젝트에서 Airflow, Dagster, Flyte를 사용한 실제 경험에서 비롯되었습니다. 목표는 기능을 비교하고 고유한 판매 포인트를 식별하는 것이었습니다.
아파치 에어플로우
2014년 Airbnb에서 시작된 Airflow는 사용자 친화적인 웹 인터페이스를 갖춘 성숙한 Python 기반 오케스트레이터입니다. 2019년 최상위 아파치 프로젝트로의 졸업으로 입지가 확고해졌습니다. Airflow는 복잡한 작업을 자동화하는 데 탁월하여 순차적 실행을 보장합니다. 날씨 프로젝트에서는 데이터 가져오기, 처리, 저장을 완벽하게 관리했습니다.
Airflow DAG 예:
# Dag Instance @dag( dag_id="weather_dag", schedule_interval="0 0 * * *", # Daily at midnight start_date=datetime.datetime(2025, 1, 19, tzinfo=IST), catchup=False, dagrun_timeout=datetime.timedelta(hours=24), ) # Task Definitions def weather_dag(): @task() def create_tables(): create_table() @task() def fetch_weather(city: str, date: str): fetch_and_store_weather(city, date) @task() def fetch_daily_weather(city: str): fetch_day_average(city.title()) @task() def global_average(city: str): fetch_global_average(city.title()) # Task Dependencies create_task = create_tables() fetch_weather_task = fetch_weather("Alwar", "2025-01-19") fetch_daily_weather_task = fetch_daily_weather("Alwar") global_average_task = global_average("Alwar") # Task Order create_task >> fetch_weather_task >> fetch_daily_weather_task >> global_average_task weather_dag_instance = weather_dag()
Airflow의 UI는 포괄적인 모니터링 및 추적 기능을 제공합니다.
대그스터
2019년 Elementl이 출시한 Dagster는 새로운 자산 중심 프로그래밍 모델을 제공합니다. 작업 중심 접근 방식과 달리 Dagster는 데이터 자산(데이터 세트) 간의 관계를 핵심 계산 단위로 우선시합니다.
Dagster 자산 예:
@asset( description='Table Creation for the Weather Data', metadata={ 'description': 'Creates databse tables needed for weather data.', 'created_at': datetime.datetime.now().isoformat() } ) def setup_database() -> None: create_table() # ... (other assets defined similarly)
Dagster의 자산 중심 설계는 투명성을 촉진하고 디버깅을 단순화합니다. 내장된 버전 관리 및 자산 스냅샷은 진화하는 파이프라인 관리 문제를 해결합니다. Dagster는 @ops
.
플라이트
Lyft에서 개발하여 2020년 오픈 소스로 공개된 Flyte는 기계 학습과 데이터 엔지니어링 모두를 위해 설계된 Kubernetes 기반 워크플로 조정자입니다. 컨테이너화된 아키텍처를 통해 효율적인 확장 및 리소스 관리가 가능합니다. Flyte는 Airflow의 작업 중심 접근 방식과 유사하게 작업 정의를 위해 Python 함수를 사용합니다.
Flyte 작업 흐름 예:
@task() def setup_database(): create_table() # ... (other tasks defined similarly) @workflow #defining the workflow def wf(city: str='Noida', date: str='2025-01-17') -> typing.Tuple[str, int]: # ... (task calls)
Flyte의 flytectl
은 로컬 실행과 테스트를 단순화합니다.
비교
Feature | Airflow | Dagster | Flyte |
---|---|---|---|
DAG Versioning | Manual, challenging | Built-in, asset-centric | Built-in, versioned workflows |
Scaling | Can be challenging | Excellent for large data | Excellent, Kubernetes-native |
ML Workflow Support | Limited | Good | Excellent |
Asset Management | Task-focused | Asset-centric, superior | Task-focused |
결론
최적의 선택은 귀하의 특정 요구 사항에 따라 다릅니다. Dagster는 자산 관리 및 버전 관리에 탁월하고 Flyte는 확장 및 ML 워크플로 지원에 탁월합니다. Airflow는 더 단순하고 전통적인 데이터 파이프라인을 위한 견고한 옵션으로 남아 있습니다. 최선의 결정을 내리려면 프로젝트의 규모, 초점, 향후 요구 사항을 신중하게 평가하세요.
위 내용은 데이터 오케스트레이션 도구 분석: Airflow, Dagster, Flyte의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











Python은 데이터 과학, 웹 개발 및 자동화 작업에 적합한 반면 C는 시스템 프로그래밍, 게임 개발 및 임베디드 시스템에 적합합니다. Python은 단순성과 강력한 생태계로 유명하며 C는 고성능 및 기본 제어 기능으로 유명합니다.

2 시간 이내에 파이썬의 기본 사항을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우십시오. 이를 통해 간단한 파이썬 프로그램 작성을 시작하는 데 도움이됩니다.

Python은 게임 및 GUI 개발에서 탁월합니다. 1) 게임 개발은 Pygame을 사용하여 드로잉, 오디오 및 기타 기능을 제공하며 2D 게임을 만드는 데 적합합니다. 2) GUI 개발은 Tkinter 또는 PYQT를 선택할 수 있습니다. Tkinter는 간단하고 사용하기 쉽고 PYQT는 풍부한 기능을 가지고 있으며 전문 개발에 적합합니다.

2 시간 이내에 Python의 기본 프로그래밍 개념과 기술을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우기, 2. 마스터 제어 흐름 (조건부 명세서 및 루프), 3. 기능의 정의 및 사용을 이해하십시오. 4. 간단한 예제 및 코드 스 니펫을 통해 Python 프로그래밍을 신속하게 시작하십시오.

Python은 웹 개발, 데이터 과학, 기계 학습, 자동화 및 스크립팅 분야에서 널리 사용됩니다. 1) 웹 개발에서 Django 및 Flask 프레임 워크는 개발 프로세스를 단순화합니다. 2) 데이터 과학 및 기계 학습 분야에서 Numpy, Pandas, Scikit-Learn 및 Tensorflow 라이브러리는 강력한 지원을 제공합니다. 3) 자동화 및 스크립팅 측면에서 Python은 자동화 된 테스트 및 시스템 관리와 같은 작업에 적합합니다.

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.
