Python中dictionary items()系列函数的用法实例
本文实例讲述了Python中dictionary items()系列函数的用法,对Python程序设计有很好的参考借鉴价值。具体分析如下:
先来看一个示例:
import html # available only in Python 3.x def make_elements(name, value, **attrs): keyvals = [' %s="%s"' % item for item in attrs.items()] attr_str = ''.join(keyvals) element = '<{name}{attrs}>{value}</{name}>'.format( name = name, attrs = attr_str, value = html.escape(value)) return element make_elements('item', 'Albatross', size='large', quantity=6) make_elements('p', '<spam>')
该程序的作用很简单,就是生成HTML标签,注意html这个模块只能在Python 3.x才有。
起初我只是注意到,生成标签属性列表的keyvals这个dictionary类型变量构建的方式很有意思,两个%s对应一个item,所以就查阅了相关的资料,结果扯出了挺多的东西,在此一并总结。
注:下面所有Python解释器使用的版本,2.x 对应的是2.7.3,3.x 对应的是3.4.1
在 Python 2.x 里,官方文档里items的方法是这么说明:生成一个 (key, value) 对的list,就像下面这样:
>>> d = {'size': 'large', 'quantity': 6} >>> d.items() [('quantity', 6), ('size', 'large')]
在搜索的过程中,无意看到stackoverflow上这样一个问题:dict.items()和dict.iteritems()有什么区别? ,第一个答案大致的意思是这样的:
“起初 items() 就是返回一个像上面那样的包含dict所有元素的list,但是由于这样太浪费内存,所以后来就加入了(注:在Python 2.2开始出现的)iteritems(), iterkeys(), itervalues()这一组函数,用于返回一个 iterator 来节省内存,但是在 3.x 里items() 本身就返回这样的 iterator,所以在 3.x 里items() 的行为和 2.x 的 iteritems() 行为一致,iteritems()这一组函数就废除了。”
不过更加有意思的是,这个答案虽然被采纳,下面的评论却指出,这种说法并不准确,在 3.x 里 items() 的行为和 2.x 的 iteritems() 不一样,它实际上返回的是一个"full sequence-protocol object",这个对象能够反映出 dict 的变化,后来在 Python 2.7 里面也加入了另外一个函数 viewitems() 和 3.x 的这种行为保持一致
为了证实评论中的说法,我做了下面的测试,注意观察测试中使用的Python版本:
测试1(Python 2.7.3):
Python 2.7.3 (default, Feb 27 2014, 19:58:35) [GCC 4.6.3] on linux2 Type "help", "copyright", "credits" or "license" for more information. >>> d = {'size': 'large', 'quantity': 6} >>> il = d.items() >>> it = d.iteritems() >>> vi = d.viewitems() >>> il [('quantity', 6), ('size', 'large')] >>> it <dictionary-itemiterator object at 0x7fe555159f18> >>> vi dict_items([('quantity', 6), ('size', 'large')])
测试2(Python 3.4.1):
Python 3.4.1 (default, Aug 12 2014, 16:43:01) [GCC 4.9.0] on linux Type "help", "copyright", "credits" or "license" for more information. >>> d = {'size': 'large', 'quantity': 6} >>> il = d.items() >>> it = d.iteritems() Traceback (most recent call last): File "<stdin>", line 1, in <module> AttributeError: 'dict' object has no attribute 'iteritems' >>> vi = d.viewitems() Traceback (most recent call last): File "<stdin>", line 1, in <module> AttributeError: 'dict' object has no attribute 'viewitems' >>> il dict_items([('size', 'large'), ('quantity', 6)])
可以看到在 Python 3.x 里面,iteritems() 和 viewitems() 这两个方法都已经废除了,而 item() 得到的结果是和 2.x 里面 viewitems() 一致的。
2.x 里 iteritems() 和 viewitems() 返回的内容都是可以用 for 来遍历的,像下面这样
>>> for k, v in it: ... print k, v ... quantity 6 size large >>> for k, v in vi: ... print k, v ... quantity 6 size large
这两者的区别体现在哪里呢?viewitems() 返回的是view object,它可以反映出 dictionary 的变化,比如上面的例子,假如在使用 it 和 vi 这两个变量之前,向 d 里面添加一个key-value组合,区别就很容易看出来了。
>>> it = d.iteritems() >>> vi = d.viewitems() >>> d['newkey'] = 'newvalue' >>> d {'newkey': 'newvalue', 'quantity': 6, 'size': 'large'} >>> vi dict_items([('newkey', 'newvalue'), ('quantity', 6), ('size', 'large')]) >>> it <dictionary-itemiterator object at 0x7f50ab898f70> >>> for k, v in vi: ... print k, v ... newkey newvalue quantity 6 size large >>> for k, v in it: ... print k, v ... Traceback (most recent call last): File "<stdin>", line 1, in <module> RuntimeError: dictionary changed size during iteration
在第三行中,我们像 d 里面插入了一个新的元素,vi 可以继续遍历,而且新的遍历能够反映出 d 的变化,但是在遍历 it 的时候,报错提示 dictionary 在遍历的时候大小发生了变化,遍历失败。
总结起来,在 2.x 里面,最初是 items() 这个方法,但是由于太浪费内存,所以加入了 iteritems() 方法,用于返回一个 iterator,在 3.x 里面将 items() 的行为修改成返回一个 view object,让它返回的对象同样也可以反映出原 dictionary 的变化,同时在 2.7 里面又加入了 viewitems() 向下兼容这个特性。
所以在 3.x 里面不需要再去纠结于三者的不同之处,因为只保留了一个 items() 方法。
相信本文所述示例对大家的Python程序设计有一定的借鉴价值。

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











MySQL에는 무료 커뮤니티 버전과 유료 엔터프라이즈 버전이 있습니다. 커뮤니티 버전은 무료로 사용 및 수정할 수 있지만 지원은 제한되어 있으며 안정성이 낮은 응용 프로그램에 적합하며 기술 기능이 강합니다. Enterprise Edition은 안정적이고 신뢰할 수있는 고성능 데이터베이스가 필요하고 지원 비용을 기꺼이 지불하는 응용 프로그램에 대한 포괄적 인 상업적 지원을 제공합니다. 버전을 선택할 때 고려 된 요소에는 응용 프로그램 중요도, 예산 책정 및 기술 기술이 포함됩니다. 완벽한 옵션은없고 가장 적합한 옵션 만 있으므로 특정 상황에 따라 신중하게 선택해야합니다.

HADIDB : 가볍고 높은 수준의 확장 가능한 Python 데이터베이스 HadIDB (HADIDB)는 파이썬으로 작성된 경량 데이터베이스이며 확장 수준이 높습니다. PIP 설치를 사용하여 HADIDB 설치 : PIPINSTALLHADIDB 사용자 관리 사용자 만들기 사용자 : createUser () 메소드를 작성하여 새 사용자를 만듭니다. Authentication () 메소드는 사용자의 신원을 인증합니다. Fromhadidb.operationimportuseruser_obj = user ( "admin", "admin") user_obj.

해시 값으로 저장되기 때문에 MongoDB 비밀번호를 Navicat을 통해 직접 보는 것은 불가능합니다. 분실 된 비밀번호 검색 방법 : 1. 비밀번호 재설정; 2. 구성 파일 확인 (해시 값이 포함될 수 있음); 3. 코드를 점검하십시오 (암호 하드 코드 메일).

MySQL은 기본 데이터 저장 및 관리를위한 네트워크 연결없이 실행할 수 있습니다. 그러나 다른 시스템과의 상호 작용, 원격 액세스 또는 복제 및 클러스터링과 같은 고급 기능을 사용하려면 네트워크 연결이 필요합니다. 또한 보안 측정 (예 : 방화벽), 성능 최적화 (올바른 네트워크 연결 선택) 및 데이터 백업은 인터넷에 연결하는 데 중요합니다.

MySQL Workbench는 구성이 올바른 경우 MariadB에 연결할 수 있습니다. 먼저 커넥터 유형으로 "mariadb"를 선택하십시오. 연결 구성에서 호스트, 포트, 사용자, 비밀번호 및 데이터베이스를 올바르게 설정하십시오. 연결을 테스트 할 때는 마리아드 브 서비스가 시작되었는지, 사용자 이름과 비밀번호가 올바른지, 포트 번호가 올바른지, 방화벽이 연결을 허용하는지 및 데이터베이스가 존재하는지 여부를 확인하십시오. 고급 사용에서 연결 풀링 기술을 사용하여 성능을 최적화하십시오. 일반적인 오류에는 불충분 한 권한, 네트워크 연결 문제 등이 포함됩니다. 오류를 디버깅 할 때 오류 정보를 신중하게 분석하고 디버깅 도구를 사용하십시오. 네트워크 구성을 최적화하면 성능이 향상 될 수 있습니다

MySQL 데이터베이스 성능 최적화 안내서 리소스 집약적 응용 프로그램에서 MySQL 데이터베이스는 중요한 역할을 수행하며 대규모 트랜잭션 관리를 담당합니다. 그러나 응용 프로그램 규모가 확장됨에 따라 데이터베이스 성능 병목 현상은 종종 제약이됩니다. 이 기사는 일련의 효과적인 MySQL 성능 최적화 전략을 탐색하여 응용 프로그램이 고 부하에서 효율적이고 반응이 유지되도록합니다. 실제 사례를 결합하여 인덱싱, 쿼리 최적화, 데이터베이스 설계 및 캐싱과 같은 심층적 인 주요 기술을 설명합니다. 1. 데이터베이스 아키텍처 설계 및 최적화 된 데이터베이스 아키텍처는 MySQL 성능 최적화의 초석입니다. 몇 가지 핵심 원칙은 다음과 같습니다. 올바른 데이터 유형을 선택하고 요구 사항을 충족하는 가장 작은 데이터 유형을 선택하면 저장 공간을 절약 할 수있을뿐만 아니라 데이터 처리 속도를 향상시킬 수 있습니다.

MySQL 연결은 다음과 같은 이유로 인한 것일 수 있습니다. MySQL 서비스가 시작되지 않았고 방화벽이 연결을 가로 채고 포트 번호가 올바르지 않으며 사용자 이름 또는 비밀번호가 올바르지 않으며 My.cnf의 청취 주소가 부적절하게 구성되어 있습니다. 1. MySQL 서비스가 실행 중인지 확인합니다. 2. MySQL이 포트 3306을들을 수 있도록 방화벽 설정을 조정하십시오. 3. 포트 번호가 실제 포트 번호와 일치하는지 확인하십시오. 4. 사용자 이름과 암호가 올바른지 확인하십시오. 5. my.cnf의 바인드 아드 드레스 설정이 올바른지 확인하십시오.

데이터 전문가는 다양한 소스에서 많은 양의 데이터를 처리해야합니다. 이것은 데이터 관리 및 분석에 어려움을 겪을 수 있습니다. 다행히도 AWS Glue와 Amazon Athena의 두 가지 AWS 서비스가 도움이 될 수 있습니다.
