python实现k均值算法示例(k均值聚类算法)
简单实现平面的点K均值分析,使用欧几里得距离,并用pylab展示。
import pylab as pl
#calc Euclid squire
def calc_e_squire(a, b):
return (a[0]- b[0]) ** 2 + (a[1] - b[1]) **2
#init the 20 point
a = [2,4,3,6,7,8,2,3,5,6,12,10,15,16,11,10,19,17,16,13]
b = [5,6,1,4,2,4,3,1,7,9,16,11,19,12,15,14,11,14,11,19]
#define two k_value
k1 = [6,3]
k2 = [6,1]
#defint tow cluster
sse_k1 = []
sse_k2 = []
while True:
sse_k1 = []
sse_k2 = []
for i in range(20):
e_squire1 = calc_e_squire(k1, [a[i], b[i]])
e_squire2 = calc_e_squire(k2, [a[i], b[i]])
if (e_squire1 sse_k1.append(i)
else:
sse_k2.append(i)
#change k_value
k1_x = sum([a[i] for i in sse_k1]) / len(sse_k1)
k1_y = sum([b[i] for i in sse_k1]) / len(sse_k1)
k2_x = sum([a[i] for i in sse_k2]) / len(sse_k2)
k2_y = sum([b[i] for i in sse_k2]) / len(sse_k2)
if k1 != [k1_x, k1_y] or k2 != [k2_x, k2_y]:
k1 = [k1_x, k1_y]
k2 = [k2_x, k2_y]
else:
break
kv1_x = [a[i] for i in sse_k1]
kv1_y = [b[i] for i in sse_k1]
kv2_x = [a[i] for i in sse_k2]
kv2_y = [b[i] for i in sse_k2]
pl.plot(kv1_x, kv1_y, 'o')
pl.plot(kv2_x, kv2_y, 'or')
pl.xlim(1, 20)
pl.ylim(1, 20)
pl.show()

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











Linux 터미널에서 Python 버전을 보려고 할 때 Linux 터미널에서 Python 버전을 볼 때 권한 문제에 대한 솔루션 ... Python을 입력하십시오 ...

Python의 Pandas 라이브러리를 사용할 때는 구조가 다른 두 데이터 프레임 사이에서 전체 열을 복사하는 방법이 일반적인 문제입니다. 두 개의 dats가 있다고 가정 해

10 시간 이내에 컴퓨터 초보자 프로그래밍 기본 사항을 가르치는 방법은 무엇입니까? 컴퓨터 초보자에게 프로그래밍 지식을 가르치는 데 10 시간 밖에 걸리지 않는다면 무엇을 가르치기로 선택 하시겠습니까?

Uvicorn은 HTTP 요청을 어떻게 지속적으로 듣습니까? Uvicorn은 ASGI를 기반으로 한 가벼운 웹 서버입니다. 핵심 기능 중 하나는 HTTP 요청을 듣고 진행하는 것입니다 ...

파이썬에서 문자열을 통해 객체를 동적으로 생성하고 메소드를 호출하는 방법은 무엇입니까? 특히 구성 또는 실행 해야하는 경우 일반적인 프로그래밍 요구 사항입니다.

이 기사는 Numpy, Pandas, Matplotlib, Scikit-Learn, Tensorflow, Django, Flask 및 요청과 같은 인기있는 Python 라이브러리에 대해 설명하고 과학 컴퓨팅, 데이터 분석, 시각화, 기계 학습, 웹 개발 및 H에서의 사용에 대해 자세히 설명합니다.

Fiddlerevery Where를 사용할 때 Man-in-the-Middle Reading에 Fiddlereverywhere를 사용할 때 감지되는 방법 ...
