python数据库操作常用功能使用详解(创建表/插入数据/获取数据)
实例1、取得MYSQL版本
# -*- coding: UTF-8 -*-
#安装MYSQL DB for python
import MySQLdb as mdb
con = None
try:
#连接mysql的方法:connect('ip','user','password','dbname')
con = mdb.connect('localhost', 'root',
'root', 'test');
#所有的查询,都在连接con的一个模块cursor上面运行的
cur = con.cursor()
#执行一个查询
cur.execute("SELECT VERSION()")
#取得上个查询的结果,是单个结果
data = cur.fetchone()
print "Database version : %s " % data
finally:
if con:
#无论如何,连接记得关闭
con.close()
执行结果:
Database version : 5.5.25
实例2、创建一个表并且插入数据
# -*- coding: UTF-8 -*-
import MySQLdb as mdb
import sys
#将con设定为全局连接
con = mdb.connect('localhost', 'root', 'root', 'test');
with con:
#获取连接的cursor,只有获取了cursor,我们才能进行各种操作
cur = con.cursor()
#创建一个数据表 writers(id,name)
cur.execute("CREATE TABLE IF NOT EXISTS \
Writers(Id INT PRIMARY KEY AUTO_INCREMENT, Name VARCHAR(25))")
#以下插入了5条数据
cur.execute("INSERT INTO Writers(Name) VALUES('Jack London')")
cur.execute("INSERT INTO Writers(Name) VALUES('Honore de Balzac')")
cur.execute("INSERT INTO Writers(Name) VALUES('Lion Feuchtwanger')")
cur.execute("INSERT INTO Writers(Name) VALUES('Emile Zola')")
cur.execute("INSERT INTO Writers(Name) VALUES('Truman Capote')")
实例3、python使用slect获取mysql的数据并遍历
# -*- coding: UTF-8 -*-
import MySQLdb as mdb
import sys
#连接mysql,获取连接的对象
con = mdb.connect('localhost', 'root', 'root', 'test');
with con:
#仍然是,第一步要获取连接的cursor对象,用于执行查询
cur = con.cursor()
#类似于其他语言的query函数,execute是python中的执行查询函数
cur.execute("SELECT * FROM Writers")
#使用fetchall函数,将结果集(多维元组)存入rows里面
rows = cur.fetchall()
#依次遍历结果集,发现每个元素,就是表中的一条记录,用一个元组来显示
for row in rows:
print row
执行结果:
(1L, ‘Jack London')
(2L, ‘Honore de Balzac')
(3L, ‘Lion Feuchtwanger')
(4L, ‘Emile Zola')
(5L, ‘Truman Capote')
实例4、使用字典cursor取得结果集(可以使用表字段名字访问值)
# -*- coding: UTF-8 -*-
# 来源:疯狂的蚂蚁的博客www.server110.com总结整理
import MySQLdb as mdb
import sys
#获得mysql查询的链接对象
con = mdb.connect('localhost', 'root', 'root', 'test')
with con:
#获取连接上的字典cursor,注意获取的方法,
#每一个cursor其实都是cursor的子类
cur = con.cursor(mdb.cursors.DictCursor)
#执行语句不变
cur.execute("SELECT * FROM Writers")
#获取数据方法不变
rows = cur.fetchall()
#遍历数据也不变(比上一个更直接一点)
for row in rows:
#这里,可以使用键值对的方法,由键名字来获取数据
print "%s %s" % (row["Id"], row["Name"])
实例5、获取单个表的字段名和信息的方法
# -*- coding: UTF-8 -*-
# 来源:疯狂的蚂蚁的博客www.server110.com总结整理
import MySQLdb as mdb
import sys
#获取数据库的链接对象
con = mdb.connect('localhost', 'root', 'root', 'test')
with con:
#获取普通的查询cursor
cur = con.cursor()
cur.execute("SELECT * FROM Writers")
rows = cur.fetchall()
#获取连接对象的描述信息
desc = cur.description
print 'cur.description:',desc
#打印表头,就是字段名字
print "%s %3s" % (desc[0][0], desc[1][0])
for row in rows:
#打印结果
print "%2s %3s" % row
运行结果: cur.description: ((‘Id', 3, 1, 11, 11, 0, 0), (‘Name', 253, 17, 25, 25, 0, 1))
Id Name
1 Jack London
2 Honore de Balzac
3 Lion Feuchtwanger
4 Emile Zola
5 Truman Capote
实例6、使用Prepared statements执行查询(更安全方便)
# -*- coding: UTF-8 -*-
# 来源:疯狂的蚂蚁的博客www.server110.com总结整理
import MySQLdb as mdb
import sys
con = mdb.connect('localhost', 'root', 'root', 'test')
with con:
cur = con.cursor()
#我们看到,这里可以通过写一个可以组装的sql语句来进行
cur.execute("UPDATE Writers SET Name = %s WHERE Id = %s",
("Guy de Maupasant", "4"))
#使用cur.rowcount获取影响了多少行
print "Number of rows updated: %d" % cur.rowcount
结果:
Number of rows updated: 1

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











이 튜토리얼은 Python을 사용하여 Zipf의 법칙의 통계 개념을 처리하는 방법을 보여주고 법을 처리 할 때 Python의 읽기 및 대형 텍스트 파일을 정렬하는 효율성을 보여줍니다. ZIPF 분포라는 용어가 무엇을 의미하는지 궁금 할 것입니다. 이 용어를 이해하려면 먼저 Zipf의 법칙을 정의해야합니다. 걱정하지 마세요. 지침을 단순화하려고 노력할 것입니다. Zipf의 법칙 Zipf의 법칙은 단순히 : 큰 자연어 코퍼스에서 가장 자주 발생하는 단어는 두 번째 빈번한 단어, 세 번째 빈번한 단어보다 세 번, 네 번째 빈번한 단어 등 4 배나 자주 발생합니다. 예를 살펴 보겠습니다. 미국 영어로 브라운 코퍼스를 보면 가장 빈번한 단어는 "TH입니다.

이 기사에서는 HTML을 구문 분석하기 위해 파이썬 라이브러리 인 아름다운 수프를 사용하는 방법을 설명합니다. 데이터 추출, 다양한 HTML 구조 및 오류 처리 및 대안 (SEL과 같은 Find (), find_all (), select () 및 get_text ()와 같은 일반적인 방법을 자세히 설명합니다.

시끄러운 이미지를 다루는 것은 특히 휴대폰 또는 저해상도 카메라 사진에서 일반적인 문제입니다. 이 튜토리얼은 OpenCV를 사용 하여이 문제를 해결하기 위해 Python의 이미지 필터링 기술을 탐구합니다. 이미지 필터링 : 강력한 도구 이미지 필터

PDF 파일은 운영 체제, 읽기 장치 및 소프트웨어 전체에서 일관된 콘텐츠 및 레이아웃과 함께 크로스 플랫폼 호환성에 인기가 있습니다. 그러나 Python Processing Plain Text 파일과 달리 PDF 파일은 더 복잡한 구조를 가진 이진 파일이며 글꼴, 색상 및 이미지와 같은 요소를 포함합니다. 다행히도 Python의 외부 모듈로 PDF 파일을 처리하는 것은 어렵지 않습니다. 이 기사는 PYPDF2 모듈을 사용하여 PDF 파일을 열고 페이지를 인쇄하고 텍스트를 추출하는 방법을 보여줍니다. PDF 파일의 생성 및 편집에 대해서는 저의 다른 튜토리얼을 참조하십시오. 준비 핵심은 외부 모듈 PYPDF2를 사용하는 데 있습니다. 먼저 PIP를 사용하여 설치하십시오. PIP는 p입니다

이 튜토리얼은 Redis 캐싱을 활용하여 특히 Django 프레임 워크 내에서 Python 응용 프로그램의 성능을 향상시키는 방법을 보여줍니다. 우리는 Redis 설치, Django 구성 및 성능 비교를 다루어 Bene을 강조합니다.

이 기사는 딥 러닝을 위해 텐서 플로와 Pytorch를 비교합니다. 데이터 준비, 모델 구축, 교육, 평가 및 배포와 관련된 단계에 대해 자세히 설명합니다. 프레임 워크, 특히 계산 포도와 관련하여 주요 차이점

이 튜토리얼은 Python 3에서 사용자 정의 파이프 라인 데이터 구조를 작성하여 클래스 및 작업자 과부하를 활용하여 향상된 기능을 보여줍니다. 파이프 라인의 유연성은 일련의 기능을 데이터 세트, GE에 적용하는 능력에 있습니다.

데이터 과학 및 처리가 가장 좋아하는 Python은 고성능 컴퓨팅을위한 풍부한 생태계를 제공합니다. 그러나 Python의 병렬 프로그래밍은 독특한 과제를 제시합니다. 이 튜토리얼은 이러한 과제를 탐구하며 전 세계 해석에 중점을 둡니다.
