深入解析Python编程中super关键字的用法
官方文档中关于super的定义说的不是很多,大致意思是返回一个代理对象让你能够调用一些继承过来的方法,查找的机制遵循mro规则,最常用的情况如下面这个例子所示:
class C(B): def method(self, arg): super(C, self).method(arg)
子类C重写了父类B中同名方法method,在重写的实现中通过super实例化的代理对象调用父类的同名方法。
super类的初始方法签名如下:
def __init__(self, type1, type2=None): # known special case of super.__init__ """ super(type, obj) -> bound super object; requires isinstance(obj, type) super(type) -> unbound super object super(type, type2) -> bound super object; requires issubclass(type2, type) Typical use to call a cooperative superclass method:
除去self外接受一个或者或者两个参数,如同注释声明的一样,接受两个参数时返回的是绑定的super实例,省略第二个参数的时候返回的是未绑定的super对象。
一般情况下当调用继承的类方法或者静态方法时,并不需要绑定具体的实例,这个时候使用super(type, type2).some_method就能达到目的,当然super(type, obj)在这种情况下也能够使用,super对象有自定义实现的getattribute方法也能够处理。不过,后者一般用来调用实例方法,这样在查找方法的时候能够传入相应的实例,从而得到绑定的实例方法:
class A(object): def __init__(self): pass @classmethod def klass_meth(cls): pass @staticmethod def static_meth(): pass def test(self): pass class B(A): pass >>> b = B() >>> super(B, b).test <bound method B.test of <__main__.B object at 0x02DA3570>> >>> super(B, b).klass_meth <bound method type.klass_meth of <class '__main__.B'>> >>> super(B, b).static_meth <function static_meth at 0x02D9CC70> >>> super(B, B).test <unbound method B.test> >>> super(B, B).klass_meth <bound method type.klass_meth of <class '__main__.B'>> >>> super(B,B).satic_meth >>> super(B,B).static_meth <function static_meth at 0x02D9CC70>
初始化super对象的时候,传递的第二个参数其实是绑定的对象,第一个参感觉数可以粗暴地理解为标记查找的起点,比如上面例子中的情况:super(B, b).test就会在B.__mro__里面列出的除B本身的类中查找方法test,因为方法都是非数据描述符,在super对象的自定义getattribute里面实际上会转化成A.__dict['test'].__get__(b, B)。
super在很多地方都会用到,除了让程序不必hardcode指定类型让代码更加动态,还有其他一些具体必用的地方比如元类中使用super查找baseclass里面的new生成自定义的类型模板;在自定义getattribute的时候用来防止无限循环等等。
关于super建议读者将它与python的描述符一起来理解,因为super就实现了描述符的协议,是一个非数据描述符,能够帮助大家更好的理解super的使用和工作原理。
同时,有以下4个点值得大家注意:
1、单继承时super()和__init__()实现的功能是类似的
class Base(object): def __init__(self): print 'Base create' class childA(Base): def __init__(self): print 'creat A ', Base.__init__(self) class childB(Base): def __init__(self): print 'creat B ', super(childB, self).__init__() base = Base() a = childA() b = childB()
输出结果:
Base create creat A Base create creat B Base create
使用super()继承时不用显式引用基类。
2、super()只能用于新式类中
把基类改为旧式类,即不继承任何基类
class Base(): def __init__(self): print 'Base create'
执行时,在初始化b时就会报错:
super(childB, self).__init__() TypeError: must be type, not classobj
3、super不是父类,而是继承顺序的下一个类
在多重继承时会涉及继承顺序,super()相当于返回继承顺序的下一个类,而不是父类,类似于这样的功能:
def super(class_name, self): mro = self.__class__.mro() return mro[mro.index(class_name) + 1]
mro()用来获得类的继承顺序。
例如:
class Base(object): def __init__(self): print 'Base create' class childA(Base): def __init__(self): print 'enter A ' # Base.__init__(self) super(childA, self).__init__() print 'leave A' class childB(Base): def __init__(self): print 'enter B ' # Base.__init__(self) super(childB, self).__init__() print 'leave B' class childC(childA, childB): pass c = childC() print c.__class__.__mro__
输入结果如下:
enter A enter B Base create leave B leave A (<class '__main__.childC'>, <class '__main__.childA'>, <class '__main__.childB'>, <class '__main__.Base'>, <type 'object'>)
supder和父类没有关联,因此执行顺序是A —> B—>—>Base
执行过程相当于:初始化childC()时,先会去调用childA的构造方法中的 super(childA, self).__init__(), super(childA, self)返回当前类的继承顺序中childA后的一个类childB;然后再执行childB().__init()__,这样顺序执行下去。
在多重继承里,如果把childA()中的 super(childA, self).__init__() 换成Base.__init__(self),在执行时,继承childA后就会直接跳到Base类里,而略过了childB:
enter A Base create leave A (<class '__main__.childC'>, <class '__main__.childA'>, <class '__main__.childB'>, <class '__main__.Base'>, <type 'object'>)
从super()方法可以看出,super()的第一个参数可以是继承链中任意一个类的名字,
如果是本身就会依次继承下一个类;
如果是继承链里之前的类便会无限递归下去;
如果是继承链里之后的类便会忽略继承链汇总本身和传入类之间的类;
比如将childA()中的super改为:super(childC, self).__init__(),程序就会无限递归下去。
如:
File "C:/Users/Administrator/Desktop/crawler/learn.py", line 10, in __init__ super(childC, self).__init__() File "C:/Users/Administrator/Desktop/crawler/learn.py", line 10, in __init__ super(childC, self).__init__() File "C:/Users/Administrator/Desktop/crawler/learn.py", line 10, in __init__ super(childC, self).__init__() File "C:/Users/Administrator/Desktop/crawler/learn.py", line 10, in __init__ super(childC, self).__init__() File "C:/Users/Administrator/Desktop/crawler/learn.py", line 10, in __init__ super(childC, self).__init__() File "C:/Users/Administrator/Desktop/crawler/learn.py", line 10, in __init__ super(childC, self).__init__() File "C:/Users/Administrator/Desktop/crawler/learn.py", line 10, in __init__ super(childC, self).__init__() File "C:/Users/Administrator/Desktop/crawler/learn.py", line 10, in __init__ super(childC, self).__init__() File "C:/Users/Administrator/Desktop/crawler/learn.py", line 10, in __init__ super(childC, self).__init__() File "C:/Users/Administrator/Desktop/crawler/learn.py", line 10, in __init__ super(childC, self).__init__() File "C:/Users/Administrator/Desktop/crawler/learn.py", line 10, in __init__ super(childC, self).__init__() File "C:/Users/Administrator/Desktop/crawler/learn.py", line 10, in __init__ super(childC, self).__init__() File "C:/Users/Administrator/Desktop/crawler/learn.py", line 10, in __init__ super(childC, self).__init__() RuntimeError: maximum recursion depth exceeded while calling a Python object
4、super()可以避免重复调用
如果childA基础Base, childB继承childA和Base,如果childB需要调用Base的__init__()方法时,就会导致__init__()被执行两次:
class Base(object): def __init__(self): print 'Base create' class childA(Base): def __init__(self): print 'enter A ' Base.__init__(self) print 'leave A' class childB(childA, Base): def __init__(self): childA.__init__(self) Base.__init__(self) b = childB() Base的__init__()方法被执行了两次 enter A Base create leave A Base create 使用super()是可避免重复调用 class Base(object): def __init__(self): print 'Base create' class childA(Base): def __init__(self): print 'enter A ' super(childA, self).__init__() print 'leave A' class childB(childA, Base): def __init__(self): super(childB, self).__init__() b = childB() print b.__class__.mro()
enter A Base create leave A [<class '__main__.childB'>, <class '__main__.childA'>, <class '__main__.Base'>, <type 'object'>]

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











PHP는 웹 개발 및 빠른 프로토 타이핑에 적합하며 Python은 데이터 과학 및 기계 학습에 적합합니다. 1.PHP는 간단한 구문과 함께 동적 웹 개발에 사용되며 빠른 개발에 적합합니다. 2. Python은 간결한 구문을 가지고 있으며 여러 분야에 적합하며 강력한 라이브러리 생태계가 있습니다.

PHP는 주로 절차 적 프로그래밍이지만 객체 지향 프로그래밍 (OOP)도 지원합니다. Python은 OOP, 기능 및 절차 프로그래밍을 포함한 다양한 패러다임을 지원합니다. PHP는 웹 개발에 적합하며 Python은 데이터 분석 및 기계 학습과 같은 다양한 응용 프로그램에 적합합니다.

VS 코드는 파이썬을 작성하는 데 사용될 수 있으며 파이썬 애플리케이션을 개발하기에 이상적인 도구가되는 많은 기능을 제공합니다. 사용자는 다음을 수행 할 수 있습니다. Python 확장 기능을 설치하여 코드 완료, 구문 강조 및 디버깅과 같은 기능을 얻습니다. 디버거를 사용하여 코드를 단계별로 추적하고 오류를 찾아 수정하십시오. 버전 제어를 위해 git을 통합합니다. 코드 서식 도구를 사용하여 코드 일관성을 유지하십시오. 라인 도구를 사용하여 잠재적 인 문제를 미리 발견하십시오.

VS 코드는 Windows 8에서 실행될 수 있지만 경험은 크지 않을 수 있습니다. 먼저 시스템이 최신 패치로 업데이트되었는지 확인한 다음 시스템 아키텍처와 일치하는 VS 코드 설치 패키지를 다운로드하여 프롬프트대로 설치하십시오. 설치 후 일부 확장은 Windows 8과 호환되지 않을 수 있으며 대체 확장을 찾거나 가상 시스템에서 새로운 Windows 시스템을 사용해야합니다. 필요한 연장을 설치하여 제대로 작동하는지 확인하십시오. Windows 8에서는 VS 코드가 가능하지만 더 나은 개발 경험과 보안을 위해 새로운 Windows 시스템으로 업그레이드하는 것이 좋습니다.

VS 코드 확장은 악의적 인 코드 숨기기, 취약성 악용 및 합법적 인 확장으로 자위하는 등 악성 위험을 초래합니다. 악의적 인 확장을 식별하는 방법에는 게시자 확인, 주석 읽기, 코드 확인 및주의해서 설치가 포함됩니다. 보안 조치에는 보안 인식, 좋은 습관, 정기적 인 업데이트 및 바이러스 백신 소프트웨어도 포함됩니다.

vs 코드에서는 다음 단계를 통해 터미널에서 프로그램을 실행할 수 있습니다. 코드를 준비하고 통합 터미널을 열어 코드 디렉토리가 터미널 작업 디렉토리와 일치하는지 확인하십시오. 프로그래밍 언어 (예 : Python의 Python Your_file_name.py)에 따라 실행 명령을 선택하여 성공적으로 실행되는지 여부를 확인하고 오류를 해결하십시오. 디버거를 사용하여 디버깅 효율을 향상시킵니다.

Python은 부드러운 학습 곡선과 간결한 구문으로 초보자에게 더 적합합니다. JavaScript는 가파른 학습 곡선과 유연한 구문으로 프론트 엔드 개발에 적합합니다. 1. Python Syntax는 직관적이며 데이터 과학 및 백엔드 개발에 적합합니다. 2. JavaScript는 유연하며 프론트 엔드 및 서버 측 프로그래밍에서 널리 사용됩니다.

PHP는 1994 년에 시작되었으며 Rasmuslerdorf에 의해 개발되었습니다. 원래 웹 사이트 방문자를 추적하는 데 사용되었으며 점차 서버 측 스크립팅 언어로 진화했으며 웹 개발에 널리 사용되었습니다. Python은 1980 년대 후반 Guidovan Rossum에 의해 개발되었으며 1991 년에 처음 출시되었습니다. 코드 가독성과 단순성을 강조하며 과학 컴퓨팅, 데이터 분석 및 기타 분야에 적합합니다.
